# encoding: utf-8
"""
nrnpython implementation of the PyNN API.
:copyright: Copyright 2006-2023 by the PyNN team, see AUTHORS.
:license: CeCILL, see LICENSE for details.
"""
from collections import defaultdict
import logging
import numpy as np
from .. import common
from ..parameters import ArrayParameter, Sequence, ParameterSpace, simplify, LazyArray
from ..standardmodels import StandardCellType
from ..random import RandomDistribution
from . import simulator
from .recording import Recorder
from .random import NativeRNG
logger = logging.getLogger("PyNN")
class PopulationMixin(object):
def _set_parameters(self, parameter_space):
"""parameter_space should contain native parameters"""
parameter_space.evaluate(mask=np.where(self._mask_local)[0])
for cell, parameters in zip(self, parameter_space):
for name, val in parameters.items():
setattr(cell._cell, name, val)
def _get_parameters(self, *names):
"""
Return a ParameterSpace containing PyNN parameters
`names` should be PyNN names
"""
def _get_component_parameters(component, names, component_label=None):
if component.computed_parameters_include(names):
# need all parameters in order to calculate values
native_names = component.get_native_names()
else:
native_names = component.get_native_names(*names)
native_parameter_space = self._get_native_parameters(*native_names,
component_label=component_label)
ps = component.reverse_translate(native_parameter_space)
# extract values for this component from any ArrayParameters
for name, value in ps.items():
if isinstance(value.base_value, ArrayParameter):
index = self.celltype.receptor_types.index(component_label)
ps[name] = LazyArray(value.base_value[index])
ps[name].operations = value.operations
return ps
if isinstance(self.celltype, StandardCellType):
if any("." in name for name in names):
names_by_component = defaultdict(list)
for name in names:
parts = name.split(".")
if len(parts) == 1:
names_by_component["neuron"].append(parts[0])
elif len(parts) == 2:
names_by_component[parts[0]].append(parts[1])
else:
raise ValueError("Invalid name: {}".format(name))
if "neuron" in names_by_component:
parameter_space = _get_component_parameters(
self.celltype.neuron,
names_by_component.pop("neuron"))
else:
parameter_space = ParameterSpace({})
for component_label in names_by_component:
parameter_space[component_label] = _get_component_parameters(
self.celltype.post_synaptic_receptors[component_label],
names_by_component[component_label],
component_label)
else:
parameter_space = _get_component_parameters(self.celltype, names)
else:
parameter_space = self._get_native_parameters(*names)
return parameter_space
def _get_native_parameters(self, *names, component_label=None):
"""
return a ParameterSpace containing native parameters
"""
parameter_dict = {}
for name in names:
if name == 'spike_times': # hack
parameter_dict[name] = [Sequence(getattr(id._cell, name)) for id in self]
else:
if component_label:
val = np.array([getattr(getattr(id._cell, component_label), name)
for id in self])
else:
val = np.array([getattr(id._cell, name)
for id in self])
if isinstance(val[0], tuple) or len(val.shape) == 2:
val = np.array([ArrayParameter(v) for v in val])
val = LazyArray(simplify(val), shape=(self.local_size,), dtype=ArrayParameter)
parameter_dict[name] = val
else:
parameter_dict[name] = simplify(val)
parameter_dict[name] = simplify(val)
return ParameterSpace(parameter_dict, shape=(self.local_size,))
def _set_initial_value_array(self, variable_name, initial_values):
# todo: support different initial values in different segments
if hasattr(self.celltype, "variable_map"):
variable_name = self.celltype.variable_map[variable_name]
if "." in variable_name:
mech_name, state_name = variable_name.split(".")
else:
mech_name, state_name = None, variable_name
if initial_values.is_homogeneous:
value = initial_values.evaluate(simplify=True)
for cell in self: # only on local node
if mech_name:
cell._cell.initial_values[mech_name][state_name] = value
else:
cell._cell.initial_values[state_name] = value
else:
if (
isinstance(initial_values.base_value, RandomDistribution)
and initial_values.base_value.rng.parallel_safe
):
local_values = initial_values.evaluate()[self._mask_local]
else:
local_values = initial_values[self._mask_local]
for cell, value in zip(self, local_values):
if mech_name:
cell._cell.initial_values[mech_name][state_name] = value
else:
cell._cell.initial_values[state_name] = value
[docs]class Assembly(common.Assembly):
__doc__ = common.Assembly.__doc__
_simulator = simulator
[docs]class PopulationView(common.PopulationView, PopulationMixin):
__doc__ = common.PopulationView.__doc__
_simulator = simulator
_assembly_class = Assembly
def _get_view(self, selector, label=None):
return PopulationView(self, selector, label)
[docs]class Population(common.Population, PopulationMixin):
__doc__ = common.Population.__doc__
_simulator = simulator
_recorder_class = Recorder
_assembly_class = Assembly
def __init__(self, size, cellclass, cellparams=None, structure=None,
initial_values={}, label=None):
common.Population.__init__(self, size, cellclass, cellparams,
structure, initial_values, label)
simulator.initializer.register(self)
def _get_view(self, selector, label=None):
return PopulationView(self, selector, label)
def _create_cells(self):
"""
Create cells in NEURON using the celltype of the current Population.
"""
# this method should never be called more than once
# perhaps should check for that
self.first_id = simulator.state.gid_counter
self.last_id = simulator.state.gid_counter + self.size - 1
self.all_cells = np.array([id for id in range(self.first_id, self.last_id + 1)],
simulator.ID)
# mask_local is used to extract those elements from arrays
# that apply to the cells on the current node, assuming
# round-robin distribution of cells between nodes
self._mask_local = self.all_cells % simulator.state.num_processes == simulator.state.mpi_rank # noqa: E501
if isinstance(self.celltype, StandardCellType):
parameter_space = self.celltype.native_parameters
else:
parameter_space = self.celltype.parameter_space
parameter_space.shape = (self.size,)
parameter_space.evaluate(mask=None, simplify=True)
if hasattr(self.celltype, "post_synaptic_receptors"):
psrs = {name: psr.model
for name, psr in self.celltype.post_synaptic_receptors.items()}
else:
psrs = None
for i, (id, is_local, params) in enumerate(
zip(self.all_cells, self._mask_local, parameter_space)
):
self.all_cells[i] = simulator.ID(id)
self.all_cells[i].parent = self
if is_local:
if hasattr(self.celltype, "extra_parameters"):
params.update(self.celltype.extra_parameters)
self.all_cells[i]._build_cell(self.celltype.model, params, psrs)
simulator.initializer.register(*self.all_cells[self._mask_local])
simulator.state.gid_counter += self.size
def _native_rset(self, parametername, rand_distr):
"""
'Random' set. Set the value of parametername to a value taken from
rand_distr, which should be a RandomDistribution object.
"""
assert isinstance(rand_distr.rng, NativeRNG)
rng = simulator.h.Random(rand_distr.rng.seed or 0)
native_rand_distr = getattr(rng, rand_distr.name)
rarr = ([native_rand_distr(*rand_distr.parameters)] +
[rng.repick() for i in range(self.all_cells.size - 1)])
self.tset(parametername, rarr)