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Outline

e |Interfaces in computational neuroscience software
« What is MUSIC?
e Two problems solved by MUSIC:
o spatial aliasing problem
o temporal aliasing problem
e« How to use MUSIC from C++, Python and PyNN
o Use cases

« Where to get software and documentation




Interfaces in computational
neuroscience

* Simulation environments in computational neuroscience,
such as NEURON, NEST or Brian, each provide many tools
needed by the user to carry out high-quality simulation studies.

* Models described differently,
environments have specific features
=> hard to move models

* Difficult to build larger simulations which re-use existing models



Interfaces in computational
neuroscience

* As systems grow and encompass more subsystems, they rapidly
become unwieldy to develop

* In general, software in computational neuroscience tends to have
a monolithic structure

* Software interfaces (APIs) allow for use of different implementations
of software components

* MUSICis an API, and implementation in the form of a C++ library,
supporting flowing of data between tools during simulation

N (INCF initiative, originally developed by O. Ekeberg and M. Djurfeldt)




‘ MUSIC co-simulations
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Application
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A co-simulation with multiple parallel applications (A, B, C)
exchanging runtime data (such as neuronal events)

b Shipping data around between applications during simulation

‘ useful e.g. for:

* Building larger models by combining models as components

* Modeling multiple scales and/or combining different
formalisms simultaneously

* Pre/postprocessing and visualization

* Interfacing to external hardware
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Co-simulation
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Spatial aliasing problem

Jlqn el

...... el e—— |

\ Joootimaad ® Rl FE R - -

Processes




| I
c . I
Distributed receiver {ata

1]

Receiver
——
[
——
—

lasing

Width

MERRHEREN
RIRP IOPUDS, POINLIISI(T |
I I 1

[[1]

Spatial al

Sender
e
e




Scheduling of
communication

Handllng of time in MUSIC

An application calls MUSIC tick () at points regularly spaced in
simulated time

* This is where data may be sent and/or received

* Different applications are allowed to call tick () at different rates

*  MUSIC may allow applications to run out-of-sync (each with its own
offset between simulation time and wallclock time)

* MUSIC allows complex topology of port connectivity

Scheduling problem
* How to deliver data in time while avoiding deadlocks
* How to interpolate continuous data given different tick rates
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C++ app: eventsource

#include <music.hh>

int
main (int argc, char *argv[])
< {
// Get real argc and argy
MUSIC: :Setup* setup = new MUSIC::Setup (argc, argv);

// Publish an output port
MUSIC: :EventOutputPort+* out = setup->publishEventQutput (portName) ;

// Associate the port with neurons ("map" the port)
MUSIC: :LinearIndex indices (firstIndex, nLocalUnits);
out->map (&indices, MUSIC: :Index: :GLOBAL);

// Prepare for simulation
MUSIC: :Runtime* runtime = new MUSIC::Runtime (setup, timestep);

// Simulation loop

4

// End simulation
runtime->finalize ();




C++ app: eventsource

#Hinclude <music.hh>

int
main (int argc, char *argv([])

£ {

// Simulation loop
spikeFile >> t >> id;
double time = runtime->time ();
while (time < stoptime)
{
double nextTime = time + timestep;
while (!spikeFile.eof () &% t < nextTime)
{
out—->insertEvent (t, MUSIC: :Globallndex (id));
spikeFile >> t >> id;
+
// Make data available for other programs
runtime->tick ();

4

time = runtime->time ();




C++ app: eventlogger

#include <music.hh>

class MyEventHandlerGlobal : public MUSIC::EventHandlerGlobalIndex {
public:
y void operator () (double t, MUSIC::GlobalIndex id)
{
// Print incoming event
std::cout << t << "\t" << id << std::endl;
}
Is;

int
main (int argc, char *argv[])

{

double time = runtime->time ();
while (time < stoptime)

y {
‘ // Retrieve data from other program
runtime->tick (O ;

time = runtime->time ();




MUSIC configuration file

np = 1
stoptime

[A]
binary
args =

[B]
binary
args =

A.out—>B.

= ./eventsource
10 spikes

= ./eventlogger
10

in [10]
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4

Python app: eventsource

import music

# Get setup handle
setup = music.Setup O

# Publish an output port
out = setup.publishEventOutput ("out")

# Associate the port with neurons ("map'" the port)
out.map {(music.Index.GLOBAL, base=firstId, size=local)

# Prepare for simulation
runtime = setup.runtime (timestep)
# Simulation loop
try:
t, id = next (spikes)
while time < stoptime:
nextTime = time + timestep
while t < nextTime:
out.insertEvent (t, id, music.Index.GLOBAL)
runtime.tick ()
time = runtime.time ()
except Stoplteration:
pass
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from pyNN import music

siml, sim2 = music.setup(music.Config("nest", 1), music.Config("neuron", 1))

siml.setup(timestep=0.1, min_delay=0.2, max_delay=1.0)
sim2.setup(timestep=0.1, min_delay=0.2, max_delay=1.0)

input_population = siml.Population(1l,
siml.SpikeSourceArray,
{’spike_times’: spike_times},
label="input")

sim2.Population(2,
sim2.IF_curr_alpha,
cell_params,
label="output")

output_population

# The connector is used on the receiving side (sim2)

projection = music.Projection(input_population, output_population,
sim2.A11ToAllConnector())

music.run(tstop)

output_population.printSpikes("Results/simpleNetwork_output.ras")

music.end()




Usage scenarios
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% Integrated simulation of the whole-body
musculo- skeletal-nervous system for
clarification of motor dysfunctions due to
neurological diseases

Jun lgarashit, Jan Moren!, Osamu Shouno3, Kazuya
Shimizu?, Naoto Yamamura?, Junichiro Yoshimoto!
Shu Takagi? & Kenji Doyal

1: Okiniwa Insitutiute of Science and Technology (OIST)
2: Tokyo University
3: Honda research Institute Japan




Full size, neuron count of rat BG and motor
cortex. (~3.2 million neurons)
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MUSIC organization

Sample patches/columns on each surface:

« L5BCS — Striatum: 50x50 patches
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GPi (db)

Th TC (db)

L5B PT (db)

preliminary results
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Other highlighted use cases

e Bluebrain Monsteer
Library for interactive visualization

e MUSIC-ROS toolchain
Philipp Weidel Thursday 10:10




Where to get MUSIC

ithub INCF/MUSIC
USIC manual in the distribution

jurfeldt et al. (2010) “Run-time interoperability between
neuronal network simulators based on the MUSIC framework”
Neuroinform.
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Run-Time Interoperability Between Neuronal Network

imulators Based on the MUSIC Framework
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Abstract MUSIC s a standard AP allowing large scale

Deuron simulators to exchange data within a parallcl

computer during runtime. A pilot implementation of
Jeased

MUSIC. In addition, since the MUSIC API enforces
independence of the applications, the multi-simulation
could be built from pluggable component modules
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Jan Morén, OIST - MUSIC application example
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