MUSIC

Mikael Djurfeldt, PDC/KTH
HBP Neuromorphic SP

Outline

e |Interfaces in computational neuroscience software
« What is MUSIC?
e Two problems solved by MUSIC:
o spatial aliasing problem
o temporal aliasing problem
e« How to use MUSIC from C++, Python and PyNN
o Use cases

« Where to get software and documentation

Interfaces in computational
neuroscience

* Simulation environments in computational neuroscience,
such as NEURON, NEST or Brian, each provide many tools
needed by the user to carry out high-quality simulation studies.

* Models described differently,
environments have specific features
=> hard to move models

* Difficult to build larger simulations which re-use existing models

Interfaces in computational
neuroscience

* As systems grow and encompass more subsystems, they rapidly
become unwieldy to develop

* In general, software in computational neuroscience tends to have
a monolithic structure

* Software interfaces (APIs) allow for use of different implementations
of software components

* MUSICis an API, and implementation in the form of a C++ library,
supporting flowing of data between tools during simulation

N (INCF initiative, originally developed by O. Ekeberg and M. Djurfeldt)

‘ MUSIC co-simulations
A MUSIC

Application

A

Application
B

_/'/IVIPI processes

A co-simulation with multiple parallel applications (A, B, C)
exchanging runtime data (such as neuronal events)

b Shipping data around between applications during simulation

‘ useful e.g. for:

* Building larger models by combining models as components

* Modeling multiple scales and/or combining different
formalisms simultaneously

* Pre/postprocessing and visualization

* Interfacing to external hardware

Network simulation

—/ e Simulator
............................ ~“Neuronal populations

Projectidn ("axons")

|
Using MUSIC to expose

data

ﬁf 1’ﬁ """" | | MUSIC output port

Co-simulation

Second simulator

il MUSIC () (]
input B
I
> E—)
— o || I I"‘T"I N

. Reflected data source

Spatial aliasing problem

Jlqn el

...... el e—— |

\ Joootimaad ® Rl FE R - -

Processes

| I
c . I
Distributed receiver {ata

1]

Receiver
——
[
——
—

lasing

Width

MERRHEREN
RIRP IOPUDS, POINLIISI(T |
I I 1

[[1]

Spatial al

Sender
e
e

Scheduling of
communication

Handllng of time in MUSIC

An application calls MUSIC tick () at points regularly spaced in
simulated time

* This is where data may be sent and/or received

* Different applications are allowed to call tick () at different rates

* MUSIC may allow applications to run out-of-sync (each with its own
offset between simulation time and wallclock time)

* MUSIC allows complex topology of port connectivity

Scheduling problem
* How to deliver data in time while avoiding deadlocks
* How to interpolate continuous data given different tick rates

Interfaces to MUSIC

{ 1

[Python ‘

l Application ‘

vMUSIC API Python API v PyNN API

C++ app: eventsource

#include <music.hh>

int
main (int argc, char *argv[])
< {
// Get real argc and argy
MUSIC: :Setup* setup = new MUSIC::Setup (argc, argv);

// Publish an output port
MUSIC: :EventOutputPort+* out = setup->publishEventQutput (portName) ;

// Associate the port with neurons ("map" the port)
MUSIC: :LinearIndex indices (firstIndex, nLocalUnits);
out->map (&indices, MUSIC: :Index: :GLOBAL);

// Prepare for simulation
MUSIC: :Runtime* runtime = new MUSIC::Runtime (setup, timestep);

// Simulation loop

4

// End simulation
runtime->finalize ();

C++ app: eventsource

#Hinclude <music.hh>

int
main (int argc, char *argv([])

£ {

// Simulation loop
spikeFile >> t >> id;
double time = runtime->time ();
while (time < stoptime)
{
double nextTime = time + timestep;
while (!spikeFile.eof () &% t < nextTime)
{
out—->insertEvent (t, MUSIC: :Globallndex (id));
spikeFile >> t >> id;
+
// Make data available for other programs
runtime->tick ();

4

time = runtime->time ();

C++ app: eventlogger

#include <music.hh>

class MyEventHandlerGlobal : public MUSIC::EventHandlerGlobalIndex {
public:
y void operator () (double t, MUSIC::GlobalIndex id)
{
// Print incoming event
std::cout << t << "\t" << id << std::endl;
}
Is;

int
main (int argc, char *argv[])

{

double time = runtime->time ();
while (time < stoptime)

y {
‘ // Retrieve data from other program
runtime->tick (O ;

time = runtime->time ();

MUSIC configuration file

np = 1
stoptime

[A]
binary
args =

[B]
binary
args =

A.out—>B.

= ./eventsource
10 spikes

= ./eventlogger
10

in [10]

Interfaces to MUSIC

{ 1

[Python ‘

l Application ‘

vMUSIC API Python API v PyNN API

4

Python app: eventsource

import music

Get setup handle
setup = music.Setup O

Publish an output port
out = setup.publishEventOutput ("out")

Associate the port with neurons ("map'" the port)
out.map {(music.Index.GLOBAL, base=firstId, size=local)

Prepare for simulation
runtime = setup.runtime (timestep)
Simulation loop
try:
t, id = next (spikes)
while time < stoptime:
nextTime = time + timestep
while t < nextTime:
out.insertEvent (t, id, music.Index.GLOBAL)
runtime.tick ()
time = runtime.time ()
except Stoplteration:
pass

Interfaces to MUSIC

{ 1

[Python ‘

l Application ‘

vMUSIC API Python API v PyNN API

from pyNN import music

siml, sim2 = music.setup(music.Config("nest", 1), music.Config("neuron", 1))

siml.setup(timestep=0.1, min_delay=0.2, max_delay=1.0)
sim2.setup(timestep=0.1, min_delay=0.2, max_delay=1.0)

input_population = siml.Population(1l,
siml.SpikeSourceArray,
{’spike_times’: spike_times},
label="input")

sim2.Population(2,
sim2.IF_curr_alpha,
cell_params,
label="output")

output_population

The connector is used on the receiving side (sim2)

projection = music.Projection(input_population, output_population,
sim2.A11ToAllConnector())

music.run(tstop)

output_population.printSpikes("Results/simpleNetwork_output.ras")

music.end()

Usage scenarios

__

CLUSTER
= ||z
NEST |G G | NEURON
515
CLUSTER | NEUROMORPHIC
s ~ HARDWARE
Simulator|= || |
Virtual G ,.uop | HW MODEL
Environment | O ||

§CLUSTER
: T ; ISUallization
Simulator % L ZMQ] % e
:‘ Control
CLUSTER - ROBOT SERVER
Simulator = /\‘ = | p Drivers
Ao » | UDP ;| Qi o
irtua alir—1Na U iSimulator
Environment ;

% Integrated simulation of the whole-body
musculo- skeletal-nervous system for
clarification of motor dysfunctions due to
neurological diseases

Jun lgarashit, Jan Moren!, Osamu Shouno3, Kazuya
Shimizu?, Naoto Yamamura?, Junichiro Yoshimoto!
Shu Takagi? & Kenji Doyal

1: Okiniwa Insitutiute of Science and Technology (OIST)
2: Tokyo University
3: Honda research Institute Japan

Full size, neuron count of rat BG and motor
cortex. (~3.2 million neurons)

Conductance-based laF or Izhikevich-type
neuron models, static or STDP synapses. cr. 1% s
PyNEST and SLI models, connected with
MUSIC L5 L5A
r._ Ccs cs
dDIMS: Volumetric FEM-based fluid- i 0
mechanical muscle model, full skeletal L5 =
physics model 159 1sa
, J LPSTB LC51.5
| o | RRSD | g | (
Medium Spiny Fast-spiking Medium Spiny Fast-spiking [i
~1.67TM ~84K . ~1.18M . ~56K . ~ —
E—- E E £ 5 EO -
Th%‘ulamus Thalamus 'Ii'halarnus
3.87mm 3.87mm , 3.87mm 3.3]"Trnrn TC — IN . HT
GEUER STN ._ | S - I —] !
o.sﬂéggu % E Thalamus
- e o e

—

. [)
Biceps Triceps
Motoneurons Motoneurons

]
vy

J

MUSIC organization

Sample patches/columns on each surface:

« L5BCS — Striatum: 50x50 patches

 L5BPT — Spinal cord: 20x20 patches T
 Gpi/EP — Thalamus TC/HT: 1 neuron per

channel (3100 total) A s o
 spinal cord — muscle: 1 motor neuron per 8 isa

channel (~750/biceps, 1500/triceps) poc i

7 a o

| o, | MR | pwea | (

Medium Spiny Fast-spiking Medium Spiny Fast-spiking [T
~1.67M ~84K . ~1.18M ~56K ~ —
E— £ £ £ I

Thé\lamus Thalamus 'I:'halarnus
3.87mm 3.£mm , 3.87mm 3.3]"Trnm TC — IN . HT
SRVER STN ._ | S - | i — !
o.sﬂézgu ~—11:SI< E -[Thalamus]
— B e l—

—

o

[}

Biceps
Motoneurons
]

Triceps
Motoneurons

-y

GPi (db)

Th TC (db)

L5B PT (db)

preliminary results

&

O

=

n

3

o ¥ “

1000 : 1500 2000

Time (ms)
- Up: GPe, STN and GPi neurons

o

10 20 30 40 50

|
w
V]

oscillating at about 14.7Hz.

| |
N
w =

» Left: power spectrum of GPi,
b Thalamic CT neurons and L5B PT
neurons.

|
[S]
o

|
Ul
o

10 20 30 40

|
u
o
u

[N |
g uuou
® o BN

|
[o)
S

10 20 30 40 50

Hz

Other highlighted use cases

e Bluebrain Monsteer
Library for interactive visualization

e MUSIC-ROS toolchain
Philipp Weidel Thursday 10:10

Where to get MUSIC

ithub INCF/MUSIC
USIC manual in the distribution

jurfeldt et al. (2010) “Run-time interoperability between
neuronal network simulators based on the MUSIC framework”
Neuroinform.

Contents

Introduction
11

ok

on Lo Existing Soltware

2 Execution Model
Pl of Exoc
al Distribution of Data

81 Oswrvicw
12 The Configuration Fik

au Program

CONTENTS

142
143
144 Finalisalion

5 Adapting Existing Applications
a1 il Mapping Forts
shation T
el Finalization
[USIC

Appli

Newaintorm
DOLILI0TS12(21 03030642

Run-Time Interoperability Between Neuronal Network

imulators Based on the MUSIC Framework

‘Miksel Djurfcld: - Johamnes Hjorth - Jochen M. Eppler - Niraj Dudsni
Moritz Helias - Tobias C. Potjans - Upinder S. Bhalla - Markus Diesmam -
- Orjan Ekeberg

Jeaneite Hellgren Kotaleski - Orjan

©The Authon(s) 210, This sticle & publihed with pe acis s 4 Speingarhnk com

Abstract MUSIC s a standard AP allowing large scale

Deuron simulators to exchange data within a parallcl

computer during runtime. A pilot implementation of
Jeased

MUSIC. In addition, since the MUSIC API enforces
independence of the applications, the multi-simulation
could be built from pluggable component modules

. B a s AP has b to cach other in
[experiences from the implementation of MUSIC inter- terms of simulation time-step or topology of connec-
¢ a1 faces for two neuronal network simulatars of different tians between the modules.

kinds, NEST and MOOSE. A multi-simulation of a
cortico-striatal nctwerk model involving both simu-
lators s performed, demonstrating how MUSIC can
promote inter-operability between models written for
different simulators and bow these can be re-used to
buikd a larger model system. Benchmarks show that the
MUSIC pilot implementation provides cificient data
transfer in a duster computer with good scaling. We
conclude that MUSIC fulfills the design goal that it
should be simple 1o adapt existing simulators to we

atcial The anlineversion of
stk (40110 10074 1073-010:3054-2)contains
iy matrial, which s avaiible 10 suthertzed wser:

Keywords MUSIC - Large-scale simulation -
Computer simulation - Computational neuscesicncs -
Neuronal network models - Inter.operability - MPL -
Parallel processing

Introduction

Large scale neuranal network models and simulations
have become impartant tools in the study of the brain
‘and the mind (Albus ct al 2007; Diurfeld ct al. 2008a)
Such models work as platiorms for intcgrating knowl-

urces of data. They help to eluc-

Johsnnes Hjorts snd Jochen M. Egpler have contrtaed
equally o the caments o th

M Djuriel (=) 1 Hprih 1 Helgren Kotsesks
O Ekeberg

date proce sing occurs in the beathy

1 M. Eppler - M Heliss- M. Diesmam
Bematein Cente for Computstionsl Newossience,

Royal mttue of Technology,
10 ok, Sweden
& maik kel s ek com

M Dijrieldt. M. Diesmam

Abest L , Frebsg, Hansaszae 94,
104 Fisiusg, Germsny
N Dudai-U_S. Bhalls
Natoml Cent e fos Biologia|Sciences Bang ose, Indis

x RIKENBin Shence Instinte, . Pot
5 610198 Suiara, Jagan Instituteof Neusosciences s Mo dcime,

2 e sesech Conter Jilich, 2425 ke, Gormssny

% 1M Eppes

x5 Research lnstitute Eutepe CmbH. . Potjans- M Diesamm

% Carl-Legen-Strate . RIKENC angutsionsl Saence Resesrch Program,

3073 Otfenibach, G essay

Wako- i, 361 0198 Setima Japan

Thanks

Ekaterina Brocke, Scilife lab, KI - communication algorithms
Alexander Peyser, Simlab neurosci, FZJ - Python interface

Andrew Davison, Jochen Eppler and Eilif Muller - PyNN
interface

Rajalekshmi Deepu, Simlab neurosci, FZJ - Travis integration
Jan Morén, OIST - MUSIC application example

INCF

HBP

Simlab neuroscience

INMé, FZ Juelich

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

