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Why bother with the description of network structure 7

» ensure reproducibility

» improve comparability to other network models and neuroanatomy

» aid understanding of activity dynamics in complex networks

» facilitate optimal coding



Still lack of consensus of how to describe networks:

» graphically

» formally

» conceptually

» ontologically



Graphical representation:

Nordlie et al. Towards Reproducible Descriptions of Neuronal Network Models. PLoS Comput Biol 5(8):
€1000456 (2009)



Graphical representation:
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Nordlie et al. Towards Reproducible Descriptions of Neuronal Network Models. PLoS Comput Biol 5(8):
€1000456 (2009)



Formal representation:

A Model Summary

Eight: primary and secondary pathway, each comprising retina, thalamus (two layers),

Populations reticular nucleus, cortex (three layers)

Topology Cartesian grids using visual-space coordinates

Connectivity Random divergent connections described by probability kernels and cut-off masks
Neuron model Leaky integrate-and-fire, fixed threshold, no absolute refractory time

Channel models | Slow hyperpolarizing channel

Conductance-based difference-of-exponentials (AMPA, GABA,, GABAg), additional in-
stantaneous sigmoidal voltage dependence (NMDA)

Plasticity —

Thalamus: inhomogeneous Poisson spike trains reflecting drifting gratings; all neurons:
spontaneous Poisson spike trains

Measurements Membrane potential

Synapse model

Input

Nordlie et al. Towards Reproducible Descriptions of Neuronal Network Models. PLoS Comput Biol 5(8):

e1000456 (2009)



Formal representation:

Topology
Rectangular 8° x 8° patch of parafoveal visual field mapped directly onto N, x N, and N5 x N, respectively \

D Connectivity

Type Divergent connections drawn from a probabilistic kernels with cut-off masks, based on grid-distance

gt

Kernel p(5,f) = poe™ @ (cf. [10, Tab. 3], pp: “Max pr. of connection”, o: “Space constant”)

1Sy — tx| > Ax/20r

Ay : “arbor spread”
|sy — ty| > Ay/2 Cay F )

Mask p(5,F) =0 fif {

Weights | Fixed, identical for each synapse type, cf. [10, Tab. 1]

Fixed, drawn from Gaussian distribution with ¢ = 1ms, cut-off near Oms implicit but not given in |
paper; for means see [10, p. 211, left column]

Delays

Nordlie et al. Towards Reproducible Descriptions of Neuronal Network Models. PLoS Comput Biol 5(8):
€1000456 (2009)



Really formal representation: CSA

Connection Set Algebra by Mikael Djurfeldt

— Mikael's talk
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Conceptual representation:
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Conceptual representation:

What do we mean by the terms we use to describe networks?

» all-to-all

> ring

» random

» one-to-one~’



one-to-one 7

— Ontology, CNO, cf.Yann's talk

wWxkIxI



Workshop Sep 2011:
Creating, Documenting & Sharing Network Models

» started to set up a draft and plan a wiki on connectivity primitives
(with Mikael Djurfeldt)

» try to systemize different terminologies used e.g.in NEST, CSA,
PyNN, ... (e.g. RandomConvergentConnect vs. Fanin)

» hopefully allows for unambiguous network definitions



Some (subjective) ideas on connectivity primitives:

» work on sets of nodes and edges, i.e. graphs

» connectivity specifies which pairs of all possible pairs of nodes in a
given set are connected by edges (aka adjacency/topology)

» connectivity primitives as 'minimal connectivity concepts’



Some (subjective) ideas on connectivity primitives:

» connection primitive is node-centric, i. e. defines connectivity between
individual nodes

» projection primitive is edge-centric, i. e. defines connectivity between
sets of nodes

» graph primitive is graph-centric, i.e. defines connectivity of entire
graphs or ensembles



Some (subjective) ideas on connectivity primitives:

» connectivity primitives can be local, i. e. each node connects to other
nodes independently of the state of the connectvity as a whole
(i.e.the graph or any subset of it)

» non-local primitives are not independent of the connectivity of other
nodes

» connectivity primitives can be deterministic or probabilistic



Possible examples for connection primitives (tbd):

» one-on-one-connection or edge (‘“‘synapse’ )

» self-connection (“autapse”)

» one-to-many/many-to-one ( “divergent/convergent’)

» multi-connection (“multapse”)

» random convergent/divergent (fan-in/fan-out): many-to-one/one-
to-many + probability distribution



Possible examples for projection primitives (tbd):

» feed-forward all-to-all

» probabilistic (needs specification of distribution!)

Possible examples for graph primitives (tbd):

» Erdos-Rényi random graph

» Watts-and-Strogatz small world network



Values and attributes to specify connections:

» values:

- nodes can have position, membrane potential, preferred orientation,

- edges can have distance, weight, delay,...
» attributes:

- nodes can be “excitatory”, “parvalbumin expressing’, ‘“compart-
ment”, ‘synaptic contact point”, “LGN", ...

- edges can be ‘“static’, “plastic’, “current-based”, “AMPA", ...

» establishment of connections can depend on all of these



Evaluation of probabilistic networks
— 2D spatial network example:
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Embedding networks into a geometric space:

» connectivity will depend on

- neuron distribution (uniform random, grid, non-uniform)

- connectivity kernel (density or probability)

- boundary conditions (open, periodic, mixture)

» analytical predictions of statistics of connectivity in dependence on
these factors can be hard to achieve

» one of the most basic features: distribution of pairwise distances



Periodic boundary conditions:
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Open boundary conditions - position matters
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Finite sample size effects - the normal case:
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Open questions:
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Open questions:

» which degree of description detail suffices to specify a complex net-
WOrk?

» when can we be sure the simulator creates the networks we think it
creates?

» benchmark/common criteria for models used most often?

» how to deal with very large multi-population networks?
(cf. however Nordlie et al., PL0oS Comput Biol 5(8):€10000456 (2009))



NEW I

Local Field Potentials in Python i

http://compneuro.umb.no/LFPy/




T hanks!



