Constructing detailed biophysical
models of hippocampal pyramidal cells

Szabolcs Kali

Laboratory of Cerebral Cortex Research
Institute of Experimental Medicine, Hungarian Academy of Sciences

kali@koki.hu

March 31, 2015



Talk outline

Relevant experimental data sets at IEM HAS

Hippocampal models in our lab

Examples of critical data and existing models

Critical elements in faithful single cell models

Our current approach to developing models

Towards a community model of the CA1 pyramidal cell



Cellular and synaptic databases at IEM HAS

e a large database (> 500 exper-
iments) of somatic whole-cell
recordings from a variety of cell
types (in CA1 and CA3) in hip- 0
pocampal slices using a stan-
dardized current step protocol

e database of synaptic connections (including short-term
plasticity)

e Mmorphological reconstructions of CA1 PCs and several
interneuron types (in rat)

e Mmorphological reconstructions of various cell types with
associated physiological (step protocol) data (in mouse — HBP)



Our hippocampal models 1: CA1l pyramidal neuron

Reconstructed CA1 pyramidal cell from Megias et al. (2001), with a
wide variety of active conductances in all compartments.
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Main features of our original CA1 PC model

SC and PP inputs are integrated differently due to both
electrotonic and active properties

in the absence of Ca2+spikes, PP inputs are modulatory

Ca2+spikes can carry an all-or-none message about the result of
distal dendritic integration

the modulation of K(A) can switch dendrites into a different
mode of processing, where synaptic input-triggered dendritic
APs can propagate in the forward direction (confirmed
experimentally by Losonczy et al. (2008))



Our hippocampal models 2: CA1 PV+} basket cell

Reconstructed CA1 PV+
basket cell from Gulyas
et al. (1999), with Na,
K(DR), and HVA Ca con-
ductances in all compart-
ments.

Reproduces experi-
mentally observed fast
oscillations in response
to strong dendritic input.
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Our hippocampal models 3: systematically simplified CA1l PC

(spatial summation in non-bursting models)
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Optimized aspects of the behavior of a reduced 5-compartment
model were similar to the morphologically detailed model.



Our hippocampal models 4: single-compartment models

e Single-compartment conductance-based (HH) models of CA1l
FSBCs and O-LM cells

e Phenomenological (adaptive exponential integrate-and-fire)
models of CA3 PCs and FSBCs, used in a network model which
captures sharp wave-ripples, gamma oscillations, and epileptic

events
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Some examples of other CA1 PC models

e a series of models by Migliore and coworkers (1999 - 2014)
e Poirazi et al. (2003) and derivatives

e Traub et al.

e Kath, Spruston et al. (2001-2009)

e Lyle Graham

e ctcC.

90 models in ModelDB...

Many of these models nicely capture some aspects of the behavior
of CA1 PCs — but how do they generalize to data sets they were
not built to reproduce?



Comparison of critical data and existing models (1)

Experiment (Bianchi et al. 2012)
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Experiment (Gasparini,Magee 2006)

Comparison of critical data and existing models
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Comparison of critical data

Experiment (Losonczy, Magee 2006)
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Qualitative comparison of data and models

Experimental results

Guolding
et al
2001
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2012
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Depolarization block
(Bianchi et al. 2012)
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If an appropriate oumber of synchronous inputs armive to the apical trunk, dendnitic spike 15 generated.
(Gasparmi Magee 2006. Fig. 1. b)

M

If an appropriate noumber of synchronous inputs armve to the apical trunk, not only dendritic spike is
generated, but somatic action potential as well
(Gasparmi Magee 2006. Fig. 1. I}

M

In the case of synchronous inputs arriving to the trunk, dendritic spike is generated, and their amplitude
decreases if the inputs are distributed.
(Gasparmi Magee 2006. Fig. 2. d g)

In the case of the most synchronous inputs arriving to the trunk the form of signal integration is supralinear.
(Gasparmi Magee 2006. Fig. 1. &)

If an appropriate number of asynchronous inputs amrive to the apical trunk no dendritic spilce is generated, but
backpropagating action potential appeares.
(Gasparmi Magee 2006. Fig. 1. a)

In the case of synchronows inputs arriving to the radial obligue dendrites the summation is supralinear
(Losonczy Magee 2006 Fig. 1. T)

In the case of asynchronous inputs arriving to the radial oblique dendrites the summation is linear.
(Losonczy Magee 2006 Fig. 1. 1)
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In the case of synchronows, distributed inputs arriving to the radial obligue dendrites the swmmation becomes

more supralinear, compared to the clustered inputs.
(Losonczy Magee 2006 Fig. 1. 1)
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Quantitative comparison of data and models

Experimental result Golding et |Miglicre et al. |Bianchi et |Kali-Freund
al. 2001 2011 al 2012
Depolarization block ocoures at an | value between 200pA-0.95nA
(Bianchi et al. 2012) X X E X
(2.9 nA) (1.5 nA)
On the apical trunk dendritic spike threshold is 52 = 5 synchronous inputs.
(Gasparini, Magee 2006) X X E E
(about 36
HIpAHs)
For highly synchronos, clustered inputs arriving to the trunk the amplitude of the local spike
generated is x x x x
64+ 3 m\. )
ike 53 mV o0 mV 50-53 m\
(Gasparini, Magee 2006) (no spike) (53 mV) (@0 mV)  |(50-53 mV)
The mean voltage threshold for dendrnitic spike generation on obligue dendrites is 3.4 £ 0.2
m at the soma. x x x x

(1.05 mV)




Regressions are common with conventional approaches

Response to 220 pA somatic current injection:

Poirazi et al. (2003)
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Elements of a detailed neuronal model

Morphology — difficult to achieve high quality (ask Attila Gulyas)

Passive properties (axial resistance is notoriously hard to
estimate)

Voltage-gated channels: types, kinetics (can vary between cell
types), modulation, distribution

We (in collaboration with Zoltan Nusser) are using a
combination of morphological reconstructions, patch-clamp
physiology, pharmacology, compartmental modeling,
optimization, and statistical inference to plan maximally
informative experiments, and determine critical parameters
(such as the sub-cellular distribution of ion channels) in a
step-by-step manner.



Our current approach

try to use experimental data directly (rather than from the
literature) — ideally, many types of data from the same cell

use multiple benchmarks concurrently

use automated optimization

We have developed a software tool to fit the parameters of
neuronal models

— GUI mode

— batch mode



The Optimizer GUI

Model & Parameter Selection -
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Model simplification results using Optimizer’s evolutionary algorithm
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A community-based strategy to develop reliable CA1 PC models

e Gather high-quality data from many types of experiments in
multiple labs

e Come up with a set of generally accepted defining criteria for
CA1l PCs based on discussion of data involving experts

e Evaluate all candidate models automatically, based on the same
(quantitative) criteria

e Make models and their results on the benchmarks public

e Discuss results, combine and improve models



Conclusions

e It is extremely difficult to build faithful compartmental models
of complex neurons (such as cortical pyramidal cells)

— no reliable model exists for CA1l PCs despite considerable
efforts
— there are a lot of free parameters, so it is relatively easy to

reproduce a few selected results, but it is much more difficult
to satisfy all available constraints

— probably no single lab has all the required resources and
expertise

But: the community as a whole has all the required expertise
and resources - so let us try to do it together!
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