Hippocampal Interneurons: Model Development Strategies

Frances K. Skinner

Toronto Western Research Institute, University Health Network and University of Toronto

HBP Hippocamp CA1: Collaborative and Integrative Modeling of Hippocampal Area CA1

31st March-1st April 2015, London, United Kingdom

images: wikipedia

TALK OUTLINE

- brief intro
- cellular-based modeling features
- existing inhibitory models (briefly)
- some of our modeling (briefly)
- opinion/suggestions

res iefly) 7)

Two Research Prongs in my Lab

Detailed multi-compartment models of inhibitory cells Population activities in inhibitory (and excitatory) networks

"The **hippocampus** is a part of the forebrain, located in the medial temporal lobe. It is critical for the formation of those kinds of memories, which can be consciously *declared*. Due to its self-generated network patterns, newly acquired memories are gradually transferred to neocortical stores through the process of <u>memory</u> consolidation."

"Nearly all *hippocampal functions* are performed in collaboration with several of its partners, of which the most prominent is the <u>entorhinal cortex</u>, and strongly influenced by subcortical neuromodulators."

Function of hippocampal subregions

from Scholarpedia, "Models of Hippocampus" - Hasselmo (2011)

Region CA1

"In contrast to region CA3, region CA1 has little excitatory recurrent connectivity, and receives primarily feedforward input from region CA3 and medial entorhinal cortex layer III. Some models have proposed that region CA1 functions as a comparator of the input from entorhinal cortex layer III with the output from region CA3....."

from Scholarpedia, "Hippocampus" - Buzsaki (2011)

Two Research Prongs in my Lab

Detailed multi-compartment models of inhibitory cells

Population activities in inhibitory (and excitatory) networks

Experimental Collaborators (present): J.J. Lawrence, L. Topolnik

Experimental Collaborators (present): S. Williams

Population Activities in rodent hippocampus

Buzsáki et al. 2003

mouse in vivo

Wu et al. 2002, 2005

spontaneous GABAergic rhythms *in vitro*

Population Activities in rodent hippocampus (cont'd)

Colgin and Moser 2009 based on Goutagny et al. 2009

Theta (4-I2 Hz) oscillations

behaviour and cognitive functioning

brain (macro-)circuits

(systems and pathways; cortical regions; distributed networks; large networks of neurons)

brain (micro-)circuits

(local circuits, networks of neurons)

cellular

• single compartment

• multi-compartment

(dendritic/axonal representation)

synaptic (electrical, chemical)

molecular

(ion channels)

subcellular

(signalling pathways; internal/external concentrations; calcium dynamics; plasticity)

genetic

Skinner and Ferguson 2013

NeuroImage 85 (2014) 702-710

Review

Five methodological challenges in cognitive electrophysiology

Michael X Cohen^{a,*}, Rasa Gulbinaite^b

Consideration from a modeling perspective Challenges quickly become apparent **Collaborations clearly required....**

"Spatial and temporal multiscale interactions are thought to be a defining feature of the brain."

"Neither ignore the details nor be consumed by them?"

Brain Networks

context and function size and architecture connectivity and cellular characteristics

"my balance and tight coupling"

Cellular-based Modeling Features.

Model Development

Skinner 2012

- possible useful organization to be clear about biological context of cellular models and to try to take best advantage of theoretical insights - consider similar mathematical model structures, so interpretation is key

Fig. 1. Three types of pyramidal cell are accompanied by at least 21 classes of interneuron in the hippocampal CA1 area. The main termination of five glutamatergic inputs are indicated on the left. The somata and dendrites of interneurons innervating pyramidal cells (blue) are orange, and those innervating mainly other interneurons are pink. Axons are purple; the main

synaptic terminations are yellow. Note the association of the output synapses of different interneuron types with the perisomatic region (left) and either the Schaffer collateral/commissural or the entorhinal pathway termination zones (right), respectively. VIP, vasoactive intestinal polypeptide; VGLUT, vesicular glutamate transporter; O-LM, oriens lacunosum moleculare.

Klausberger and Somogyi 2008

Cellular details critical, interneurons in particular...

REVIEW

doi:10.1038/nature12983

Interneuron cell types are fit to function

Adam Kepecs¹ & Gordon Fishell²

Understanding brain circuits begins with an appreciation of their component parts — the cells. Although GABAergic interneurons are a minority population within the brain, they are crucial for the control of inhibition. Determining the diversity of these interneurons has been a central goal of neurobiologists, but this amazing cell type has so far defied a generalized classification system. Interneuron complexity within the telencephalon could be simplified by viewing them as elaborations of a much more finite group of developmentally specified cardinal classes that become further specialized as they mature. Our perspective emphasizes that the ultimate goal is to dispense with classification criteria and directly define interneuron types by function.

NATURE | VOL 505 | 16 JANUARY 2014

Morphology

Figure 1 | Multiple dimensions of interneuron diversity. Interneuron cell types are usually defined using a combination of criteria based on morphology, connectivity pattern, synaptic properties, marker expression and intrinsic firing properties. The highlighted connections define fast-spiking cortical basket cells.

REVIEW INSIGHT

Figure 4 | **Coordination and flow control hypotheses of recruitment. a**, Coordination hypothesis. The bottom trace shows a local field potential representing the network state in the hippocampus. The firing of different neuron types (chandelier cell, light blue; basket cell, red; OLM cell, blue; pyramidal cell, brown) can be described in reference to the local field potential, both in terms of overall activity level and phase relationship^{87,107,113}. **b**, Flow control hypothesis. The bottom arrows mark the timing of four behavioural events: entry, exit, cue and reward. The firing of different neuron types (vasointestinal peptide, green; parvalbumin, red; somatostatin, blue; pyramidal cell brown) can be described in reference to these events^{84,102}.

Hippocampus, Model Inhibitory Cells

Frances K. Skinner^{a,b,c}* and Katie A. Ferguson^{a,c} ^aToronto Western Research Institute, University Health Network, Toronto, Ontario, Canada ^bMedicine (Neurology), University of Toronto, Toronto, ON, Canada ^cPhysiology, University of Toronto, Toronto, Ontario, Canada

Table 1 Fast-spiking interneurons, basket cells							
Interneuron type	Mathematical model type	Experimental basis	Functional aspects	References			
CA3 interneuron	Biophysical, multi- (Na, K-D)	Passive – generic Active – generic f-I – yes	Network (carbachol-driven population rhythms)	Traub et al. (1992)			
CA3 SP interneuron	Biophysical, multi- (Na, K-DR, K-Ca, K-AHP, K-A, Ca-L)	Passive – generic Active – generic f-I – yes	Intrinsic (active, VGCs in dendrites, and spike transduction)	Traub and Miles (1995)			
CA3 SP interneuron	Derivative, subsequent (Traub et al. 1995)		Network (population bursts with dendritic GJ coupling)	Traub (1995)			
CA1 ^a fast- spiking basket cell	Biophysical, single- (Na, K-DR)	Passive – generic Active – generic f-I – yes	Network (gamma rhythms)	Wang and Buzsáki (1996)			
CA1 fast- spiking basket cell	Derivative, subsequent (Wang and Buzsáki 1996)		Network (gamma rhythms)	Bartos et al. (2007) ^b			

etc.

Vida 2010

Models of 'identifiable' hippocampal interneurons - comprehensive list organized in 3 Tables, considering 5 aspects

Interneuron type	Mathematical model type	Experimental basis	Functional aspects	References
CA1 O–LM interneuron	Biophysical, multi- (Na, K-DR, K-A, h-sag)	$\frac{\text{Passive} - \text{specific}}{\text{Active} - \text{specific}}$	Intrinsic (active, VGCs in dendrites, and spike propagation)	Saraga et al. (2003)
		f-I – yes		
CA1 O–LM interneuron	Derivative, simplification to single- (Saraga et al. 2003)		Network (theta/gamma rhythms)	Gloveli et al. (2005) ^a
DG HIPP interneuron	Biophysical, multi- (Na, K-DRf, K-A, K-Ca, K-AHP, Ca-L, h-sag)	Passive – specific	Network (DG hyperexcitability, mossy fiber, and mossy cell changes)	Santhakumar et al. (2005) ^b
		Active – specific		
		f-I – yes		
CA3 O–LM interneuron	Biophysical, single- (Na, Na-p, K-DR, h-sag)	Passive – generic	Network (theta-phase separation, encoding, and retrieval in CA3)	Kunec et al. (2005)
		Active – generic		
		f-I – no		
CA1 O–LM interneuron	Biophysical, single- (Na, Na-p, K-DR, h-sag)	Passive – generic	Network (theta rhythm)	Rotstein et al. (2005)
		Active – generic		
		f-I – no		

 Table 2
 Horizontal dendrites, distal dendrite-targeting interneuron types

etc.

Table 3	Other interneuron types
Table 5	Other internetion types

Interneuron		Experimental		
type	Mathematical model type	basis	Functional aspects	References
CA1 O/A interneuron	Biophysical, single- (Na, Na-p, K-DR, K-D)	Passive – generic	Network (synchronized bursting with GJ and inhibitory coupling)	Skinner et al. (1999)
		Active – generic		
		f-I – no		
CA1 O/A interneuron	Derivative, expansion to multi- (Skinner et al. 1999)	f-I – yes	Intrinsic (K-D current control of bursting)	Saraga and Skinner (2002)
CA1 ^a O/A CB+ interneuron	Biophysical, single- (Na, K-DR, K-Ca, Ca-L, h-sag)	Passive – generic	Network (septo-hippocampal theta rhythms)	Wang (2002) ^b
		Active – generic		
		f-I – no		
CA1 LM/ RAD interneuron ^c	Biophysical, single- (Na, Na-p, K-DRf, K-DRs, K-A, K-D)	Passive – specific	Intrinsic (subthreshold MPO generation)	Morin et al. (2010)
		Active – specific		
		f-I – no		
CA1 LM/ RAD interneuron	Derivative, subsequent (Morin et al. 2010)	f-I – yes	Network (reliable theta-frequency spiking in virtual networks)	Sritharan and Skinner (2012)

etc.

Oriens lacunosum-moleculare (OLM) interneuron

Long-term potentiation in hippocampal oriens interneurons: postsynaptic induction, presynaptic expression and evaluation of candidate retrograde factors

Elizabeth Nicholson and Dimitri M. Kullmann

UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK

Phil. Trans. R. Soc. B 2014 369, 20130133, published 2 December 2013

Maccaferri and Lacaille 2003

Blasco-Ibanez and Freund 1995

OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons

Richardson N Leão^{1,2}, Sanja Mikulovic¹, Katarina E Leão^{1,2}, Hermany Munguba², Henrik Gezelius¹, Anders Enjin¹, Kalicharan Patra¹, Anders Eriksson¹, Leslie M Loew³, Adriano B L Tort² & Klas Kullander^{1,4}

The vast diversity of GABAergic interneurons is believed to endow hippocampal microcircuits with the required flexibility for memory encoding and retrieval. However, dissection of the functional roles of defined interneuron types has been hampered by the lack of cell-specific tools. We identified a precise molecular marker for a population of hippocampal GABAergic interneurons known as oriens lacunosum-moleculare (OLM) cells. By combining transgenic mice and optogenetic tools, we found that OLM cells are important for gating the information flow in CA1, facilitating the transmission of intrahippocampal information (from CA3) while reducing the influence of extrahippocampal inputs (from the entorhinal cortex). Furthermore, we found that OLM cells were interconnected by gap junctions, received direct cholinergic inputs from subcortical afferents and accounted for the effect of nicotine on synaptic plasticity of the Schaffer collateral pathway. Our results suggest that acetylcholine acting through OLM cells can control the mnemonic processes executed by the hippocampus.

Models and Motivation

www.sciencemag.org SCIENCE VOL 287 14 JANUARY 2000

Distal Initiation and Active Propagation of Action Potentials in Interneuron Dendrites

Marco Martina,¹ Imre Vida,² Peter Jonas^{1*}

J Physiol (2003), **552.3** *pp*. 673–689 © The Physiological Society 2003

Active dendrites and spike propagation in multicompartment models of oriens-lacunosum/moleculare hippocampal interneurons

F. Saraga*‡, C. P. Wu*, L. Zhang*† and F. K. Skinner*†‡§

*Toronto Western Research Institute, University Health Network, Departments of †Medicine (Neurology) and ‡Physiology and §Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5T 2S8

DOI: 10.1113/jphysiol.2003.046 www.jphysiol Cellular/Molecular

Somatodendritic Kv7/KCNQ/M Channels Control Interspike Interval in Hippocampal Interneurons

J. Josh Lawrence,¹* Fernanda Saraga,^{2,3,4}* Joseph F. Churchill,¹ Jeffrey M. Statland,¹ Katherine E. Travis,¹ Frances K. Skinner,^{2,3,4,5} and Chris J. McBain¹

¹Laboratory of Cellular and Synaptic Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, ²Toronto Western Research Institute, University Health Network, ³Department of Physiology, ⁴Department of Medicine (Neurology), and ⁵Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5T 2S8

Using Multi-compartment Ensemble Modeling as an Investigative Tool of **Spatially Distributed Biophysical Balances**

...taking advantage of previous works and insights

Cycling Process: Hyperpolarization-activated inward currents (I_h) in dendrites?

Sekulić et al. 2014

Non-uniform distributions of I_h and different kinetics could better reproduce experimental results

....morphology and experimental recordings from the same cell needed (ongoing)

Im

FIGURE 4 | Sum of squared errors between the model and experimental traces across different optimization procedures. Means

Sekulić et al. 2015

... back to theta oscillations and OLM cells

VOLUME 15 | NUMBER 11 | NOVEMBER 2012 NATURE NEUROSCIENCE

OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons

Richardson N Leão^{1,2}, Sanja Mikulovic¹, Katarina E Leão^{1,2}, Hermany Munguba², Henrik Gezelius¹, Anders Enjin¹, Kalicharan Patra¹, Anders Eriksson¹, Leslie M Loew³, Adriano B L Tort² & Klas Kullander^{1,4}

The vast diversity of GABAergic interneurons is believed to endow hippocampal microcircuits with the required flexibility for memory encoding and retrieval. However, dissection of the functional roles of defined interneuron types has been hampered by the lack of cell-specific tools. We identified a precise molecular marker for a population of hippocampal GABAergic interneurons known as oriens lacunosum-moleculare (OLM) cells. By combining transgenic mice and optogenetic tools, we found that OLM cells are important for gating the information flow in CA1, facilitating the transmission of intrahippocampal information (from CA3) while reducing the influence of extrahippocampal inputs (from the entorhinal cortex). Furthermore, we found that OLM cells were interconnected by gap junctions, received direct cholinergic inputs from subcortical afferents and accounted for the effect of nicotine on synaptic plasticity of the Schaffer collateral pathway. Our results suggest that acetylcholine acting through OLM cells can control the mnemonic processes executed by the hippocampus.

...back to theta oscillations and OLM cells

inhibitory cell numbers appropriate for microcircuit theta oscillation context, intrinsic cell models in same context, excitatory drive from experiment

CAI multi-compartment model used to integrate effects of cell firing at various layers

...different 'types' of experimentally linked OLM cell models

Two distinct regions in which OLM cells do or do not (red) affect theta power

CAI Hippocampal Model(s) - Can we do this? Maybe.

We should definitely be sharing, but... Models and their development should not and cannot really be separated from their context ('function') Why not? (not as 'nice' as worms or crabs....)

Hippocampal function? (e.g., not just CAI, and we're building the models to get biological/physiological insight...)

What to include? (unclear because of above)

CAI Hippocampal Model(s) - Can we do this? **Suggestions**

Determine and define common context/framework **first** (e.g., theta, gamma, SPWR, seizures, place cells/grid cells, phase precession, in vitro, in vivo aspects etc.) Then build community

Ensure metadata is included given the above (e.g., species, temperature, solutions, recording details, etc.)

Separate context-dependent and context-independent experimental data for model parameters

(e.g., synaptic decay time constants ok, but perhaps not reversal potentials; channel kinetics ok but probably not channel conductances etc.)

Implementation - integrating models of different detail - I/O possibilities? and try to take advantage of theoretical aspects... (e.g., Hedrick and Cox)