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PART I

AN INTRODUCTION TO THE

FACETS NEUROMORPHIC HARDWARE



Limits of numerical approaches
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FACETS neuromorphic hardware

Spikey - 2006:

384 neurons
105 synapses

HICANN - 2010:

512 neurons
1.3  105 synapses

Wafer - 2011:

16  104 neurons
4  107 synapses

Rack – 20??:

16  105 neurons
4  108 synapses



Hardware vs. biology

Biological neural computation

1011 neurons, 1015 synapses
10.000 synapses per neuron

vast range of neuron
categories and parameters

long term, short term
local, global

various time constants and delays

FACETS wafer-scale hardware

105 Neurons, 107 Synapses
arbitrarily configurable

multi-compartment 
Adaptive Exponential Integrate and Fire neurons

Short Term Plasticity
Spike Timing Dependent Plasticity

adjustable time constants, but no on-wafer delays

modular, high bandwidth, low power, fault tolerant

Connectivity

Diversity

Plasticity

Timing

Scalability

up to 105

speedup



Neuron model of choice

R. Naud et al.: Firing patterns in the adaptive-exponential integrate-and fire-model, BiolCybern(2008) 99:335–347

tonic 
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initial 
burst

delayed 
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regular 
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delayed 
regular 
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irregular 
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CMOS implementation of AdEx neuron



Wafer-scale integration

massive configuration space

 dedicated mapping tools
 versatile control software
 distortion analysis and compensation

 complex emulation workflow



PART II (A)

WORKFLOW:

BIOLOGY-TO-HARDWARE MAPPING

?

?



Modeling language



Modeling language



Software and hardware layers



Software and hardware layers



Biology-to-hardware mapping

Graph model (TUD)



Biology-to-hardware mapping

Graph model (TUD)



Hardware graph



Biology-to-hardware mapping

Graph model (TUD)



Nforce cluster algorithm



Placing optimization



Mapping algorithm performance



PART II (B)

WORKFLOW:

DISTORTION EVALUATION

AND COMPENSATION

?

?



Attractor memory schematic



Spiking patterns



Trajectories in voltage space



Network dynamics



Network dynamics

Motivation

- hardware imperfections
- nonisomorphic simulation/emulation environments
e.g. neuron model, digitized weights, …

- mapping/routing losses

robustness is an essential characteristic of biological neural networks
 hardware independent research

Relevant parameters

- STP
- adaptation
- delays
- synaptic weights
- neuron loss
- synapse loss

- number of MC per HC
- number of HC
- total number of MC
( network size)

model-
independent

model-
specific



The importance of STP

without STP (Poisson input: 1 kHz)with STP (Poisson input: 4 kHz)



The importance of adaptation and delays

+ adaptation + delays

mean firing rate in ON state:  
30 Hz

+ adaptation - delays

mean firing rate in ON state: 
28 Hz

- adaptation - delays

mean firing rate in ON state: 
116 Hz



Dwell times and neuron loss



Synapse loss

0% loss 10% loss

25% loss 40% loss



Dwell times and synapse loss

5 %

10 % 20 %

0 %



Firing rates and synapse loss



Network scaling

Relevant parameters

- STP
- adaptation
- delays
- synaptic weights
- neuron loss
- synapse loss

model-
independent

- number of MC per HC
- number of HC
- total number of MC
( network size)

model-
specific

scaling may 
influence 
behavior !





Network scaling

Relevant parameters

- STP
- adaptation
- delays
- synaptic weights
- neuron loss
- synapse loss

model-
independent

- number of MC per HC
- number of HC
- total number of MC
( network size)

model-
specific

Scaling through modification of connection probabilities

1 2 3

1 2 3

scaling may 
influence 
behavior !



1 2 3

1 2

1 2



Scaling and robustness

0% synapse loss

3 HC 3 MC

20% synapse loss



Scaling and robustness

9 HC 9 MC0% synapse loss 20% synapse loss



Pattern completion

stored

images



Spontaneous pattern generation



Pattern completion: small distortion

input image



Pattern completion: large distortion

input image



Pattern completion: two patterns

input image



Pattern completion: a more biological approach



Synfire chain schematic

same parameters in our model

exc      100 regular spiking neurons

inh      25 fast spiking neurons



Synfire chain simulations



Synapse loss



The problem of limited input

only 64 external inputs
with max. 100 Hz / channel

for 192 neurons
4000 Hz independent

Poisson input

per neuron



The problem of limited input

Problem I

how to quantify and predict correlations 
which arise from shared inputs ?

Problem II

given a limited set of input channels and a 
minimum requirement for inputs per neuron, 

can we find a corresponding mapping ?



Single neuron behavior

The Load Function

the neuron fires if
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Statistical treatment of neural activity

Gaussian distribution:                     , for example

two channels: shared         and private

two neurons sharing inputs:

 multivariate normal distributions

numerical integration:

conditional probability:
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Symmetric Uncertainty
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features:

• symmetric in X and Y

• pure information theory  highly general

• normalized: SU[0,1]  allows comparison
over a wide range of spike train parameters

• no free parameters !

• more than just synchrony



Partial derivatives

Vthresh = -55 mV simtime = 20 s
Vrest = -59 mV wexc= w  0,5 nS
mem = 5 ms



The mapping problem

kmax

maximum
common
inputs per 

neuron pair

n
total inputs 
per neuron












N (=64/2)
total inputs M (=192)

total outputs

for given N, n minimize k

while keeping M  192
or

for given N, n (large), kmax (small)

can we find enough subsets (M)?

k
common
inputs per 

neuron pair



A graph theoretical approach

vertices  subsets
edges  overlap between subsets

two subsets are connected if they have more than kmax elements in common

            

1

6,5,1,5,4,2,6,5,4,5,3,1,4,2,1,3,2,1

max 



k

 3,2,1

 4,2,1

 5,3,1

 5,4,2

 6,5,1

 6,5,4

goal:

find maximum number of unconnected vertices

a.k.a.

MAXIMUM INDEPENDENT
VERTEX SET PROBLEM



Results

The hybrid algorithm

Results

idea: 1) use greedy algorithm until
2) use “smart” (vertex-cut) algorithm from that point onward 

  40000iersmart_barrcard 

 n=4, kmax=2    M=1240  n=6, kmax=3    M=1357

 n=5, kmax=2    M=348  n=7, kmax=3    M=412

N=32, M192
min(kmax)



Limited output

on-wafer bandwidth:
2 Tbps (Layer 1)

only 1% of this data can be read out

voltages: 2 per chip, 384 chips
20 MB/s for one channel

front-end data volume @CMS:
2 Tbps



PART III

THE FACETS DEMONSTRATOR



The FACETS Demonstrator…

… integrates techniques and tools developed within FACETS …

… into a complete workflow …

… that allows to use the FACETS wafer-scale hardware system …

(currently: a virtual version of it)

… for the emulation of benchmark cortical neural network models …

… which exhibit functionality that can be demonstrated …

… which are written in PyNN …

… and therefore can be computed with established software simulators

(for verification, performance evaluation etc.)



Simulating the emulator



Simulating the emulator



Goals

Testing and evaluation of all involved software layers

Virtual hardware allows to

– test software before hardware is available

– test without possible hardware-specific problems

– provide a preliminary PyNN module for off-line testing of experiments

Verification of possible hardware changes

e.g. optionally insert detailed HICANN model

 indispensable framework for preparation and development tasks



The Demonstrator models (so far)

 A layer 2/3 attractor memory
(by KTH, Krishnamurty / Lansner)

 A synfire chain model
(by INCM and ALUF, Kremkow / Aertsen / Masson)

 A model of self-sustaining cortical AI states
(by UNIC, Davison / Destexhe)

 Upcoming: Two-layer model by UNIC

All written in PyNN, all scalable, basic versions can be mapped to
hardware without synapse loss



L2/3 cortical attractor memory (NEST)



L2/3 cortical attractor memory (virtual HW)



Synfire chain with feedforward inhibition (NEST)



Synfire chain with feedforward inhibition (virtual HW)



Cortical AI states (NEURON)



Cortical AI states (virtual HW)



PART IV

“SPIKEY” - DEMOS



The “Spikey” chip



WTA ring



WTA ring



WTA ring



Synfire chain with feedforward inhibition



Synfire chain with feedforward inhibition



“Hellfire chain”



“Hellfire chain”



L2/3 cortical attractor memory



L2/3 cortical attractor memory



Talking Spikey



Talking Spikey



PART V

SUMMARY & TO-DO-LIST



Summary

well-established workflow:

1. write model in PyNN

2. run!



Summary

well-established workflow:

1. write model in PyNN

2. run!

3.1 mapping tool chooses optimal placing and routing

3.2 graph model used for parameter space configuration

3.3 complex, custom-designed software takes care of communication

this is done
automatically…



Summary

0.1 evaluate model – check if suitable for HW

0.2 analyze influence of distortions on dynamics

0.3 find (if possible !) suitable compensation mechanisms

0.4 investigate scaling properties, if necessary

0.5 think about input-to-network mapping

0.6 think about readout issues

well-established workflow:

1. write model in PyNN

2. run!

3.1 mapping tool chooses optimal placing and routing

3.2 graph model used for parameter space configuration

3.3 complex, custom-designed software takes care of communication

this is done
automatically…

however, you still
need to use your brain…



To-do list

Software and modeling

- Demonstrator benchmark models:
find suitable compensation mechanisms for hardware-specific distortions

- embed input-to-network mapping optimization in mapping algorithm

Hardware and low-level software

- implement multi-Spikey environment

- get a fully functioning wafer-scale system (huge R&D effort for hardware people)
investigate the interplay between software and actual hardware

Long-term perspectives

- multi-wafer neuromorphic computation facility
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Links

The FACETS Project

www.facets-project.org

The Electronic Vision(s) group

www.kip.uni-heidelberg.de/cms/groups/vision/home/

PyNN

neuralensemble.org/trac/PyNN/


