

The FACETS Project

NEUROSCIENTIFIC MODELING WITH LARGE-SCALE AND HIGHLY ACCELERATED NEUROMORPHIC HARDWARE DEVICES

Mihai A. Petrovici, University of Heidelberg

Electronic Vision(s) Group Part I

AN INTRODUCTION TO THE FACETS NEUROMORPHIC HARDWARE

Limits of numerical approaches

computers use too much resources

- loss of fault tolerance inherent to neural systems
- power consumption of the simulation layer

biologically inspired architectures preserve the fault tolerance and low power consumption of neural systems at the device level \rightarrow physical model

Spikey - 2006:

384 neurons

10⁵ synapses

Spikey - 2006:

384 neurons10⁵ synapses

HICANN - 2010

512 neurons 1.3 · 10⁵ synapses

Spikey - 2006: 384 neurons 10⁵ synapses

Wafer - 2011:

- $16 \cdot 10^4$ neurons
- $4 \cdot 10^7$ synapses

HICANN - 2010:

512 neurons 1.3 · 10⁵ synapses

Spikey - 2006: 384 neurons 10⁵ synapses

Wafer - 2011:

- $16 \cdot 10^4$ neurons
- $4 \cdot 10^7$ synapses

HICANN - 2010:

512 neurons 1.3 · 10⁵ synapses Rack – 20??: 16 · 10⁵ neurons 4 · 10⁸ synapses

Hardware vs. biology

Biological neural computation

10¹¹ neurons, 10¹⁵ synapses

10.000 synapses per neuron

vast range of neuron

categories and parameters

long term, short term

local, global

various time constants and delays

Connectivity

Diversity

Plasticity

Timing

Scalability

n FACETS wafer-scale hardware

10⁵ Neurons, 10⁷ Synapses arbitrarily configurable

multi-compartment Adaptive Exponential Integrate and Fire neurons

> Short Term Plasticity Spike Timing Dependent Plasticity

adjustable time constants, but no on-wafer delays

modular, high bandwidth, low power, fault tolerant

up to 10⁵ speedup

Neuron model of choice

R. Naud et al.: Firing patterns in the adaptive-exponential integrate-and fire-model, BiolCybern(2008) 99:335-347

CMOS implementation of AdEx neuron

Wafer-scale integration

?

Part II (a)

WORKFLOW:

BIOLOGY-TO-HARDWARE MAPPING

Modeling language

Modeling language

Software and hardware layers

Software and hardware layers

Biology-to-hardware mapping

Graph model (TUD)

Biology-to-hardware mapping

Hardware graph

Biology-to-hardware mapping

Graph model (TUD)

Nforce cluster algorithm

Placing optimization

Mapping algorithm performance

?

PART II (B)

WORKFLOW: DISTORTION EVALUATION AND COMPENSATION

Wafer

Power-module

DNC/FPGA board

Attractor memory schematic

Spiking patterns

Trajectories in voltage space

Trajectory of the attractor network state in mean voltage phase space

Network dynamics

Network dynamics

Motivation

- hardware imperfections
- nonisomorphic simulation/emulation environments e.g. neuron model, digitized weights, ...
- mapping/routing losses

robustness is an essential characteristic of biological neural networks \rightarrow hardware independent research

Relevant parameters

modelindependent

- STP
- adaptation
- delays
- synaptic weights
- neuron loss
- synapse loss

- number of MC per HC
- number of HC
- total number of MC
 - (\equiv network size)

modelspecific

The importance of STP

with STP (Poisson input: 4 kHz)

Trajectory of the attractor network state in mean voltage phase space

without STP (Poisson input: 1 kHz)

Trajectory of the attractor network state in mean voltage phase space

The importance of adaptation and delays

+ adaptation + delays

+ adaptation - delays

- adaptation - delays

mean firing rate in ON state: 30 Hz

mean firing rate in ON state: 28 Hz mean firing rate in ON state: 116 Hz

Trajectory of the attractor network state in mean voltage phase space

4000

Time (ms)

5000

6000

7000

8000

1000

2000

3000

Trajectory of the attractor network state in mean voltage phase space

Dwell times and neuron loss

Synapse loss

Dwell times and synapse loss

Firing rates and synapse loss

KTH L23 model, 9 HC, 3 MC per HC Firing rate in ON/OFF states as function of synapse loss (averaged over 6 runs)

Network scaling

Relevant parameters

- STP
 adaptation
 delays
 synaptic weights
- neuron loss
- synapse loss

- number of MC per HC
- number of HC
- total number of MC
- (≡ network size)

modelspecific scaling may influence behavior !

Network scaling

Scaling and robustness

3 HC 3 MC

Trajectory of the attractor network state in mean voltage phase space

Trajectory of the attractor network state in mean voltage phase space

Scaling and robustness

0% synapse loss

Trajectory of the attractor network state in mean voltage phase space

20% synapse loss

Trajectory of the attractor network state in mean voltage phase space

Pattern completion

Spontaneous pattern generation

Pattern completion: small distortion

Pattern completion: two patterns

Pattern completion: a more biological approach

Synfire chain schematic

Synfire chain simulations

Synapse loss

The problem of limited input

only 64 external inputs with max. 100 Hz / channel

for 192 neurons

The problem of limited input

Problem II

given a limited set of input channels and a minimum requirement for inputs per neuron, can we find a corresponding mapping ? Problem I

how to quantify and predict correlations which arise from shared inputs ?

Single neuron behavior

The Load Function

$$\mathcal{L}(t=0) = \sum_{i=1}^{n} w_i \cdot \Theta(-t_i) \cdot \exp t_i / \tau$$

spikes*i*

 $\tau = \max\left(\tau_{syn}, \tau_{mem}\right)$ with

the neuron fires if

$$\mathcal{L} > \mathcal{L}_{\text{thresh}}$$

Statistical treatment of neural activity

Gaussian distribution: $\mathcal{N}_{M}(\mu, \Sigma)$, for example $\mathcal{N}_{1}(\overline{\mathcal{L}}, \sigma^{2})$ two channels: shared (\mathcal{L}_{s}) and private (\mathcal{L}_{p})

$$P_0(\mathcal{L}_A = a) = \int_{-\infty}^{\infty} P_0(\mathcal{L}_s = x) P_0(\mathcal{L}_p = a - x) dx = \mathcal{N}_1\left(\overline{\mathcal{L}}_s + \overline{\mathcal{L}}_p, \sigma_{\mathcal{L}_s}^2 + \sigma_{\mathcal{L}_p}^2\right)$$

two neurons sharing inputs:

$$P_{0}(\mathcal{L}_{A} = a, \mathcal{L}_{B} = b) = \int_{-\infty}^{\infty} P_{0}(\mathcal{L}_{s} = x) P_{0}(\mathcal{L}_{p} = a - x) P_{0}(\mathcal{L}_{p} = b - x) dx$$

 \rightarrow multivariate normal distributions

numerical integration: $P(A, \neg B) := P(a > \mathcal{L}_{thresh}, b < \mathcal{L}_{thresh})$

conditional probability: P(A | B) = P(A, B) / P(B)

Symmetric Uncertainty

$$SU(X,Y) = 2R = 2\frac{I(X;Y)}{H(X) + H(Y)}$$
$$I(A;B) = \sum_{A \in \{0,1\}} \sum_{B \in \{0,1\}} p(A \cap B) \log \frac{p(A \cap B)}{p(A)p(B)}$$

features:

- symmetric in X and Y
- pure information theory \rightarrow highly general
- normalized: SU∈[0,1] ⇒ allows comparison over a wide range of spike train parameters
- no free parameters !
- more than just synchrony

Partial derivatives

EXP DATA: results_experiment/result_mean_measure_symmetric_uncertainty_exact_common__nest_2009-05-12_exactCommon_pafut_12_3_cutOff1.00.txt THEORY DATA: results theory/result theory symmetric uncertainty nest 2009-05-12 exactCommon with avg conductance.txt

The mapping problem

A graph theoretical approach

vertices ← subsets edges ← overlap between subsets

two subsets are connected if they have more than k_{max} elements in common

Results

The hybrid algorithm

idea:

1) use greedy algorithm until $card(\Omega) \le smart_barrier \approx 40000$ 2) use "smart" (vertex-cut) algorithm from that point onward

Limited output

on-wafer bandwidth: 2 Tbps (Layer 1)

only 1% of this data can be read out

voltages: 2 per chip, 384 chips 20 MB/s for one channel

front-end data volume @CMS: 2 Tbps

Part III

THE FACETS DEMONSTRATOR

The FACETS Demonstrator...

... integrates techniques and tools developed within FACETS ...

... into a complete workflow ...

... that allows to use the FACETS wafer-scale hardware system ... (currently: a virtual version of it)

... for the emulation of benchmark cortical neural network models ...

... which exhibit functionality that can be demonstrated ...

... which are written in PyNN ...

... and therefore can be computed with established software simulators (for verification, performance evaluation etc.)

Simulating the emulator

Simulating the emulator

Testing and evaluation of all involved software layers

Virtual hardware allows to

- test software before hardware is available
- test without possible hardware-specific problems
- provide a preliminary PyNN module for off-line testing of experiments

Verification of possible hardware changes

e.g. optionally insert detailed HICANN model

 \Rightarrow indispensable framework for preparation and development tasks

The Demonstrator models (so far)

• A layer 2/3 attractor memory (by KTH, Krishnamurty / Lansner)

• A synfire chain model (by INCM and ALUF, Kremkow / Aertsen / Masson)

• A model of self-sustaining cortical Al states (by UNIC, Davison / Destexhe)

• Upcoming: Two-layer model by UNIC

All written in PyNN, all scalable, basic versions can be mapped to hardware without synapse loss

L2/3 cortical attractor memory (NEST)

L2/3 cortical attractor memory (virtual HW)

Synfire chain with feedforward inhibition (NEST)

Synfire chain model (acc. to INCM-CNRS) without feed-forward inhibition

Synfire chain with feedforward inhibition (virtual HW)

Cortical AI states (NEURON)

Cortical AI states (virtual HW)

Part IV

"SPIKEY" - DEMOS

The "Spikey" chip

WTA ring

Excitatory stimuli

> Ring of excitatory neurons (neighbors connected)

WTA ring

WTA ring

Synfire chain with feedforward inhibition

Synfire chain model (acc. to INCM-CNRS) with feed-forward inhibition

Synfire chain model (acc. to INCM-CNRS) without feed-forward inhibition

Synfire chain with feedforward inhibition

"Hellfire chain"

L2/3 cortical attractor memory

L2/3 cortical attractor memory

Talking Spikey

Talking Spikey

Summary

well-established workflow:

- 1. write model in PyNN
- 2. run!

Summary

well-established workflow:

- 1. write model in PyNN
- 2. run!
- 3.1 mapping tool chooses optimal placing and routing
- 3.2 graph model used for parameter space configuration
- 3.3 complex, custom-designed software takes care of communication

this is done automatically...

Summary

0.1 evaluate model – check if suitable for HW
0.2 analyze influence of distortions on dynamics
0.3 find (if possible !) suitable compensation mechanisms
0.4 investigate scaling properties, if necessary
0.5 think about input-to-network mapping
0.6 think about readout issues

well-established workflow:

- 1. write model in PyNN
- 2. run!
- 3.1 mapping tool chooses optimal placing and routing
- 3.2 graph model used for parameter space configuration
- 3.3 complex, custom-designed software takes care of communication

however, you still need to use your brain...

this is done automatically...

To-do list

Software and modeling

- Demonstrator benchmark models: find suitable compensation mechanisms for hardware-specific distortions
- embed input-to-network mapping optimization in mapping algorithm

Hardware and low-level software

- implement multi-Spikey environment
- get a fully functioning wafer-scale system (huge R&D effort for hardware people) investigate the interplay between software and actual hardware

Long-term perspectives

multi-wafer neuromorphic computation facility

Acknowledgements

Group

Acknowledgements

Links

The FACETS Project

www.facets-project.org

The Electronic Vision(s) group

www.kip.uni-heidelberg.de/cms/groups/vision/home/

PyNN

neuralensemble.org/trac/PyNN/