
Modeling spontaneous brain activity in Python
Scientific progress and software challenges

Gaël Varoquaux, INRIA and Neurospin

Spontaneous brain activity

Why study spontaneous brain activity?

Explains 90% of the signal
in task-driven experiments

Window on intrinsic brain architecture

Unique biomarker to study brain pathologies
on impaired patients

Scientific challenge
To develop in collaboration with
neuroscientists new statistical
tools to learn probabilistic models
of spontaneous brain activity

Outline

1 Spatial patterns of brain activity

2 Beyond activation maps

3 Inter-subject comparisons

4 From models to software tools?

1 Spatial patterns of brain
activity

1 Conventional brain mapping

Study of stimuli response

Mass-univariate statistics:
for each voxel X = βββY + E

Group inference: subject-variability model on βββ

1 Conventional brain mapping – software

Nipy: NeuroImaging in Python
Berkeley, Stanford, Neurospin . . .

Vision: Open code shared between labs

Progress: Statistical models implemented
API difficult to use
Good Input/Output code
Preprocessing not implemented

Roadblocks: Different teams ⇒ different visions
Scientists can’t justify time on “solved
problems”

1 Spatial correlation maps of spontaneous activity

Biswal 1995: strong correlation between activity in
left and right motor cortex at rest

Later: seed-based correlation mapping

The human brain is intrinsically organized into
dynamic, anticorrelated functional networks (Fox 2005)

How many? How to choose seeds?

1 Independent component analysis

=

so
u
rc

es voxels

B M · S=
voxels

so
u
rc

es

B: observed images
M: mixing matrix
S: sources

Minimize mutual information between patterns S.

No noise model

⇒ Lack of reproducibility + Fits noise

1 Independent component analysis

=

so
u
rc

es voxels

B M · S=
voxels

so
u
rc

es

B: observed images
M: mixing matrix
S: sources

Minimize mutual information between patterns S.

No noise model

⇒ Lack of reproducibility + Fits noise

1 Independent component analysis

=

so
u
rc

es voxels

B M · S=
voxels

so
u
rc

es

B: observed images
M: mixing matrix
S: sources

Minimize mutual information between patterns S.

No noise model

⇒ Lack of reproducibility + Fits noise

1 Model subject-to-subject variability

A1 6= A2

Multivariate random effects model:
Ys = loadings× Ps + intra-subject noise PCA
{Ps} = loadings× B + inter-subject variability CCA

B = M× A ICA

⇒ Group-level networks

1 Model subject-to-subject variability

Reproducibility across random groups

no CCA CCA + ICA
Subspace .36 (.02) .71 (.01)

One-to-one .36 (.02) .72 (.05)

Varoquaux, NeuroImage 2010

1 Efficient Python implementation (CanICA)
Problem to solve:

(1) Ys = loadings× Ps + . . . PCA: SVD
(2) {Ps} = loadings× B + . . . CCA: SVD
(3) B = M× A ICA: iterations
+ Recomputed many times across random groups

Step 2 and 3: Small data size ⇒ not bottleneck
Step 1: Independent problems per subject

⇒Parallel runs and caching of the results

Joblib: Python functions as pipeline jobs
Goals: remove dataflow and persistence problems
from algorithmic code

Spatial patterns of brain activity
New algorithms for spatial decomposition
of spontaneous activity with explicit model
of group-variability
Separation of concerns in code:

algorithms 6= dataflow

2 Beyond activation maps

2 Segmenting sparse regions

so
u
rc

es voxels

B M · S=
voxels

so
u
rc

es

2 Segmenting sparse regions

Varoquaux, ISBI 2010

so
u
rc

es voxels

B M · S=
voxels

so
u
rc

es

so
u
rc

es voxels

B M · S=
voxels

so
u
rc

es

Q
voxels

+((
Interesting sources S sparse
Q: Gaussian noise
⇒ Null hypothesis: centered normal distribution.

2 A full-brain parcellation

Visual system

0-74 9

map 0, reproducibility: 0.54

V1

3-91 -3

map 1, reproducibility: 0.52

V1-V2

40-80 4

map 3, reproducibility: 0.47

extrastriate

-30-78 24

map 25, reproducibility: 0.34

superior parietal

2 A full-brain parcellation

Motor system

-1-25 62

map 4, reproducibility: 0.47

part of
motor

-42-21 54

map 21, reproducibility: 0.36

part of
motor

-54-8 29

map 32, reproducibility: 0.30

part of
motor

2 A full-brain parcellation

2 Between-regions connectivity

Correlation matrix Σ

Data Visualization

Change of representation
Understanding complex data requires inter-
active visualization with high level concepts

Mayavi:
Python 3D visualization

3 Inter-subject comparisons

Ischemic stroke: Temporary interruption of blood flow
Affects 1 person out of 100 every
year for people > 55 years
Causes focal lesions of varying
consequences

motor deficiencies language impairments coma . . .

How does brain reorganize after stroke?

Prognostic based on intrinsic brain activity?

3 Probabilistic covariance modeling
Probabilistic model of data

Covariance = 2nd moment of observed data
⇒Specifies a probability distribution

Test the likelihood of data in a covariance model

Covariances variations in healthy population

Which one of the above has a large cortical lesion?

3 Probabilistic covariance modeling
Probabilistic model of data

Covariance = 2nd moment of observed data
⇒Specifies a probability distribution

Test the likelihood of data in a covariance model

Covariances variations in healthy population

Which one of the above has a large cortical lesion?

3 Probabilistic covariance modeling
Probabilistic model of data

Covariance = 2nd moment of observed data
⇒Specifies a probability distribution

Test the likelihood of data in a covariance model

Covariances variations in healthy population

Which one of the above has a large cortical lesion?

3 Modeling variability of covariance

Varoquaux, MICCAI 2010

Controls
Patient

3 Modeling variability of covariance

Varoquaux, MICCAI 2010

Controls
Patient

3 Modeling variability of covariance

Varoquaux, MICCAI 2010

Controls
Patient

Controls

Patient

3 Modeling variability of covariance

Varoquaux, MICCAI 2010

Controls
Patient

Controls

Patient

dΣ

P(dΣ): probability density in tangent space

3 Modeling variability of covariance

Varoquaux, MICCAI 2010

Controls
Patient

Controls

Patient

dΣ

P(dΣ): probability density in tangent space
controls patients

L
o
g
-l
ik

e
lih

o
o
d

Tangent
space

3 Finding the cause of the difference

Between which regions is connectivity is modified?

Ill-posed problem
Non-local effects

⇒Many differences causes give the same observations

Our suggestion
Pair-wise partial correlations
In tangent space: almost independent
Draw random groups of healthy controls to tabulate
their variability

3 Finding the cause of the difference

Research code in clinical settings
Applications give rise to non-trivial
mathematical problems
Need to interact with neurologists
Round-trips are costly: neurologists should
use our code, modify our code

4 From models to software
tools?

4 The hidden costs of releasing software
Gap from paper to software:
Remove duplication Write documentation
Make usable APIs Write tests Fix corner cases

Cost of code
Complexity scales as the square of project size
Woodfield 1979, an experiment on unit increase in problem
complexity

Cost of users
Backward compatibility
Support for multiple installations and versions
Bug reports, feature request, mailing list support

Maintenance cost ∼ (# lines)2√# users

4 Addressing the scientific software challenge
Better code

High-level coding and abstractions
numpy arrays: abstract out memory and pointers
traits Model+View: hide dialogs and events
joblib: factor out persistence

Common libraries
scipy, Mayavi, . . .

Project management decisions
80/20 rule
Not every research code should be released
Focus on documentation and installation

4 Software as building blocks for new science
Segregated, functionally-specialized, packages

Answer a specific problem
Limit dependencies

Reusable projects
Useful for a different purpose than the original one
Libraries (no control of point of entry)
Standard data structures
Most often simple
BSD licensed

4 Mayavi: making 3D visualization reusable
Pipelines: from data sources to visualization objects

⇒⇒⇒

Simple API: mlab.contour3d(x, y, z, data)

Building pipelines by function calls:
mlab.pipeline.iso surface(mlab.pipeline.contour(src))

GUI
+ automatic script generation

4 Mayavi: making 3D visualization reusable

260 lines of code!

All dialogs are components:
we expose our internals

Visualizations included Traits view
Easy update of data

4 Mayavi: making 3D visualization reusable

260 lines of code!

All dialogs are components:
we expose our internals

Visualizations included Traits view
Easy update of data

4 joblib: not writing pipelines

Dataflow pipeline: succession of processing steps
executed on demand

joblib: Lazy-revaluation
Persitence
Parallel processing
Logging

All with functions (seemingly)

4 joblib: not writing pipelines

>>> from j o b l i b import Memory
>>> mem = Memory(c a c h e d i r =’/tmp/ joblib ’)
>>> import numpy as np
>>> a = np. v a n d e r (np. a r a n g e (3))
>>> s q u a r e = mem. cache (np. s q u a r e)
>>> b = s q u a r e (a)

[Memory] C a l l i n g s q u a r e ...
s q u a r e (a r r a y ([[0 , 0, 1],

[1, 1, 1],
[4, 2, 1]]))

s q u a r e - 0.0 s , 0.0 min

>>> c = s q u a r e (a)
>>> # The above call did not trigger an evaluation

Towards Quantitative modeling of
spontaneous brain activity

Requires probabilistic models and state-the-art
machine learning tools

Algorithms and software development hand in
hand with neurologists for applications

Need a high-level stack of software tools gen-
eral purpose with separation of concerns

	Spatial patterns of brain activity
	Beyond activation maps
	Inter-subject comparisons
	From models to software tools?
	

