#### Modeling spontaneous brain activity in Python Scientific progress and software challenges

#### Gaël Varoquaux, INRIA and Neurospin



#### Spontaneous brain activity



#### Why study spontaneous brain activity?

## Explains 90% of the signal in task-driven experiments

Window on intrinsic brain architecture

 Unique biomarker to study brain pathologies on impaired patients

#### Scientific challenge

To develop in collaboration with neuroscientists new statistical tools to learn probabilistic models of spontaneous brain activity Outline

- Spatial patterns of brain activity
- **2** Beyond activation maps
- **3** Inter-subject comparisons
- **4** From models to software tools?

# **1** Spatial patterns of brain activity



#### 1 Conventional brain mapping

Study of stimuli response



#### Mass-univariate statistics: for each voxel $\mathbf{X} = \boldsymbol{\beta}\mathbf{Y} + \mathbf{E}$

#### Group inference: subject-variability model on $\beta$



#### **1** Conventional brain mapping – software

- Nipy: NeuroImaging in Python Berkeley, Stanford, Neurospin ....
- Vision: Open code shared between labs
- Progress: Statistical models implemented API difficult to use ••• Good Input/Output code Preprocessing not implemented **Roadblocks:** Different teams  $\Rightarrow$  different visions Scientists can't justify time on "solved problems"

#### **1** Spatial correlation maps of spontaneous activity

Biswal 1995: strong correlation between activity in left and right motor cortex at rest

Later: seed-based correlation mapping

 Image: seed-based correlation mapping

 Imag

The human brain is intrinsically organized into dynamic, anticorrelated functional networks (Fox 2005)

How many? How to choose seeds? 👄

#### **1** Independent component analysis



■ Minimize mutual information between patterns *S*.

#### **1** Independent component analysis



#### **1** Independent component analysis



Minimize mutual information between patterns *S*.

#### No noise model

 $\Rightarrow$  Lack of reproducibility + Fits noise

#### 1 Model subject-to-subject variability



Multivariate random effects model:

#### ⇒ Group-level networks



#### 1 Model subject-to-subject variability



**Reproducibility across random groups** 

|            | no CCA    | CCA + ICA |
|------------|-----------|-----------|
| Subspace   | .36 (.02) | .71 (.01) |
| One-to-one | .36 (.02) | .72 (.05) |

Varoquaux, NeuroImage 2010

#### **1** Efficient Python implementation (CanICA)

#### Problem to solve:

+ Recomputed many times across random groups

Step 2 and 3: Small data size  $\Rightarrow$  not bottleneck

Step 1: ■Independent problems per subject ⇒Parallel runs and caching of the results

**Joblib:** Python functions as pipeline jobs Goals: remove dataflow and persistence problems from algorithmic code Spatial patterns of brain activity
 New algorithms for spatial decomposition of spontaneous activity with explicit model of group-variability
 Separation of concerns in code: algorithms ≠ dataflow

### **2** Beyond activation maps



#### 2 Segmenting sparse regions



#### 2 Segmenting sparse regions



Interesting sources S sparseQ: Gaussian noise

 $\Rightarrow$  Null hypothesis: centered normal distribution.

Varoquaux, ISBI 2010

#### 2 A full-brain parcellation



#### 2 A full-brain parcellation



#### A full-brain parcellation



#### 2 Between-regions connectivity

#### Correlation matrix **S**







#### Change of representation

Understanding complex data requires interactive visualization with *high level concepts* 

#### Mayavi:

Python 3D visualization



## **3** Inter-subject comparisons



Ischemic stroke: Temporary interruption of blood flow
 Affects 1 person out of 100 every year for people > 55 years
 Causes focal lesions of varying consequences

motor deficiencies language impairments coma ...



Prognostic based on intrinsic brain activity?

#### **3** Probabilistic covariance modeling

#### Probabilistic model of data

- Covariance =  $2^{nd}$  moment of observed data
- $\Rightarrow$  Specifies a probability distribution
  - Test the likelihood of data in a covariance model

#### **3** Probabilistic covariance modeling

#### Probabilistic model of data

- Covariance =  $2^{nd}$  moment of observed data
- $\Rightarrow$  Specifies a probability distribution
  - Test the likelihood of data in a covariance model

#### Covariances variations in healthy population













Which one of the above has a large cortical lesion?

#### **3** Probabilistic covariance modeling

#### Probabilistic model of data

- Covariance  $= 2^{nd}$  moment of observed data
- $\Rightarrow$  Specifies a probability distribution
  - Test the likelihood of data in a covariance model

#### Covariances variations in healthy population













Which one of the above has a large cortical lesion?









 $\mathcal{P}(d\Sigma)$ : probability density in tangent space



 $\mathcal{P}(d\Sigma)$ : probability density in tangent space

#### **3** Finding the cause of the difference

#### Between which regions is connectivity is modified?

#### Ill-posed problem

- Non-local effects
- $\Rightarrow$ Many differences causes give the same observations

#### **Our suggestion**

Pair-wise partial correlations
In tangent space: almost independent
Draw random groups of healthy controls to tabulate their variability

#### **3** Finding the cause of the difference



# Research code in clinical settings Applications give rise to non-trivial mathematical problems Need to interact with neurologists Round-trips are costly: neurologists should use our code, modify our code





# 4 From models to software tools?

#### 4 The hidden costs of releasing software

#### Gap from paper to software:

Remove duplication Write documentation Make usable APIs Write tests Fix corner cases

#### Cost of code

Complexity scales as the square of project size Woodfield 1979, an experiment on unit increase in problem complexity

#### **Cost of users**

- Backward compatibility
- Support for multiple installations and versions
- Bug reports, feature request, mailing list support

#### Maintenance cost $\sim (\# \text{ lines})^2 \sqrt{\# \text{ users}}$

#### 4 Addressing the scientific software challenge

#### **Better code**

High-level coding and abstractions
numpy arrays: abstract out memory and pointers
traits Model+View: hide dialogs and events
joblib: factor out persistence
Common libraries
scipy, Mayavi, ...

#### Project management decisions 80/20 rule

Not every research code should be releasedFocus on documentation and installation

4 Software as building blocks for new science

- Segregated, functionally-specialized, packages
- Answer a specific problem
- Limit dependencies

#### **Reusable projects**

- Useful for a different purpose than the original one
- Libraries (no control of point of entry)
- Standard data structures
- Most often simple
- BSD licensed

#### 4 Mayavi: making 3D visualization reusable

Pipelines: from data sources to visualization objects



Simple API: mlab.contour3d(x, y, z, data)

 Building pipelines by function calls: mlab.pipeline.iso\_surface(mlab.pipeline.contour(src))

#### GUI

+ automatic script generation

| 8                    | Edit properties |                     |              |  |
|----------------------|-----------------|---------------------|--------------|--|
| Contours             | Actor Te:       | turing              |              |  |
| Contours             |                 |                     |              |  |
| Auto contours: 🧭     |                 |                     |              |  |
|                      |                 |                     |              |  |
| Numbe                | r of contour    | 5: 5                | < >          |  |
| Minin                | num contou      | r: 0.00892766044281 | 87.5 0.00892 |  |
| Maxin                | num contou      | r: 0.00892766044281 | 87.5 87.5    |  |
| Auto update range: 🖌 |                 |                     |              |  |

#### 4 Mayavi: making 3D visualization reusable



#### 4 Mayavi: making 3D visualization reusable



4 joblib: not writing pipelines

**Dataflow pipeline**: *succession of processing steps executed on demand* 

joblib: Lazy-revaluation Persitence Parallel processing Logging

All with functions (seemingly)

#### 4 joblib: not writing pipelines

```
>>> from joblib import Memory
>>> mem = Memory(cachedir='/tmp/joblib')
>>> import numpy as np
>>> a = np.vander(np.arange(3))
>>> square = mem.cache(np.square)
>>> b = square(a)
[Memory] Calling square...
square(array([[0, 0, 1],
       [1, 1, 1],
       [4, 2, 1]]))
                       _____square - 0.0s, 0.0min
>>> c = square(a)
>>> # The above call did not trigger an evaluation
```

Towards Quantitative modeling of spontaneous brain activity

Requires probabilistic models and state-the-art machine learning tools

Algorithms and software development hand in hand with neurologists for applications

Need a high-level stack of software tools general purpose with separation of concerns