ConnPlotte

Perspectives

Visualizing Network Connectivity with ConnPlotter

Hans Ekkehard Plesser & Eilen Nordlie

Norwegian University of Life Sciences Simula Research Laboratory RIKEN Brain Sciences Institute

8 October 2009

ConnPlotter

Perspectiv

Happy Birthday, Neural Network Simulators!

Network Diagrams

Connectivity Pattern Tables

ConnPlotter

ConnPlotter

Perspective:

Happy Birthday, Neural Network Simulators!

Network Simulation: 55 years!

ConnPlotter 8 October 2009

Party!

Network Diagrams

Connectivi Pattern Tables

ConnPlotte

ConnPlotter

Perspecti

B. G. Farley & A. W. Clark, 1954

- Simulation of self-organized systems by digital computer
- MIT Memory test computer
 - 4096 16-bit words
 - 90.000 fetch/add per sec
- 64 leaky I&F neurons
- $ightharpoonup \delta$ -synapses w/ delay
- exponentially decaying threshold
- Gaussian noise (LFG)
- ▶ 75% connectivity
- Hebbian learning

ConnPlotter

Perspectives

First Neuron Class: 40 years!

- Lars Walløe, J. K. S. Jansen, Kirsten Nygaard
- ► A Computer Simulated Model of a Secondary Order Sensory Neuron
- Kybernetik 6:130–141 (1969)
- ► Model of neurons in dorsal spino-cerebellar tract
- Direct comparison to experimental data
- Implemented in Simula on a Univac 1107

```
process class spindle (N, freqrest, sens);
           integer N: real fregrest, sens;
           begin real amplit, del;
           del := 1000/(freqrest + sens * length);
               comment (this statement only serves to insert
               clarifying text in the program)
               The delay is now given its value.
               "length" is an external parameter representing
               muscle stretch;
           read (amplit);
               comment the value of "amplit" is fetched from
               some external source of information:
            hold (uniform (0, del));
               comment this statement is described below:
           if (time-tfire) < tblock then
impulse:
              begin timp := time;
               comment this is the case of blocking.
               timp is updated, no other effect.
"impulse" is a "label", giving a name to the
                subsequent statement.
                "go to impulse" brings us back to this state-
              go to pause
```

```
else if (backgroot + spindlepot + amplit > barrier)
then
begin fire (N); timp: = time;
comment this is the case of firing
else
begin ampliast: = spindlepot + amplit;
timp: = time
```

comment this is the case of a pulse building up the membrane potential without causing a firing; end;

pause: hold (normal (del, A * del);
go to impulse
end;

ConnPlotter

Perspectives

Network Diagrams

What makes science science?

What makes science science?

Refutable hypotheses

Hypotheses must be stated with sufficient detail and precision so that one can devise meaningful tests or counterexamples.

Reproducible experiments

Experiments must be described and performed so carefully, that others can *reproduce* them. Genuine failure to reproduce results invalidates original findings.

Accumulation of knowledge

Accumulation of knowledge through exchange, evolution and (sometimes) revolution of ideas.

What makes science science?

Refutable hypotheses

Hypotheses must be stated with sufficient detail and precision so that one can devise meaningful tests or counterexamples.

Reproducible experiments

Experiments must be described and performed so carefully, that others can *reproduce* them. Genuine failure to reproduce results invalidates original findings.

Accumulation of knowledge

Accumulation of knowledge through exchange, evolution and (sometimes) revolution of ideas.

ConnPlotter

Refutable hypotheses

Hypotheses must be stated with sufficient detail and precision so that one can devise meaningful tests or counterexamples.

Reproducible experiments

Experiments must be described and performed so carefully, that others can *reproduce* them. Genuine failure to reproduce results invalidates original findings.

Accumulation of knowledge

Accumulation of knowledge through exchange, evolution and (sometimes) revolution of ideas.

ConnPlotter

- Reliable,
- ► Precise,
- Expressive,
- Easy-to-Use
- means to visualize our models of neuronal networks.

ConnPlotter

- Reliable,
- Precise,
- Expressive,
- Easy-to-Use
- means to visualize our models of neuronal networks

ConnPlotte

- Reliable,
- Precise,
- Expressive,
- Easy-to-Use
- means to visualize our models of neuronal networks

ConnPlotter

- Reliable,
- Precise,
- Expressive,
- Easy-to-Use
- means to visualize our models of neuronal networks.

ConnPlotter

- Reliable,
- Precise,
- Expressive,
- Easy-to-Use
- means to visualize our models of neuronal networks.

Connective Pattern Tables

ConnPlotte

ConnPlotte

reispectiv

Topone Mills

What can we do?

- Develop standards for symbols (eg Kitano et al, Nature Biotechnol 2005)
- Draw network at different levels (from Nordlie et al, 2009)

- Problems:
 - How to generate automagically?
 - Confusing line crossings

Dot doesn't help ...

ConnPlotter 8 October 2009

Party

Network Diagrams

Connectivity
Pattern
Tables

ConnPlotte

Connectivity Pattern

ConnPlotter

Perspectives

Connectivity Pattern Tables

NEST Topology: Simple Layers

ConnPlotter 8 October 2009

Party!

Network Diagrams

Connectivity Pattern Tables

ConnPlotte

Real networks: Complex Layers

ConnPlotter 8 October 2009

Party!

Network Diagrams

Connectivity Pattern Tables

ConnPlotter

Perspective:

From Hill & Tononi, J Neurophysiol, 2005, 93, 1671-1698

ConnPlotter

Perspectives

NEST Topology: Composite Layer Elements

- Each color represents a neuron model
- Connections are made by specifiying entire layer and model to connect to/from

Perspective

Populations, Groups, Projections

Population Homogeneous group of neurons with 2D-layout

Group Collection of populations, e.g., a layer

Projection Rule for connecting two populations

Mask Only target population neurons inside mask are connected

Kernel Probability of connection

Synapse model

Connectivity Pattern Table (CPT)

- Connectivity matrix showing kernels & masks
- Intensity = weight \times probability

Condense by combining across populations, synapse

Connectivity Pattern Tables

ConnPlotter

ConnPlotter

Perspective

Different synapse types

- Different colors
- ▶ Co-occurring types placed side-by-side

Aggregate with synapse types

RG

IG

ConnPlotter 8 October 2009

Party!

Network Diagrams

Connectivity Pattern Tables

ConnPlotte

The Hill-Tononi Model ...

ConnPlotter 8 October 2009

Party!

Network Diagrams

Connectivi Pattern Tables

ConnPlotte

...and as CPT

ConnPlotter 8 October 2009

Party!

Network Diagrams

Connectivity Pattern Tables

ConnPlotter

Partially Aggregated CPTs

ConnPlotter 8 October 2009

Party!

Network Diagrams

Connectivity Pattern Tables

ConnPlotte

Fully Aggregated CPTs

ConnPlotter 8 October 2009

Party!

Network Diagrams

Connectivity Pattern Tables

ConnPlotte

	Ret	Тр	Rp	Vp_h	Vp_v
Ret					
욘		•	•	•	•
å					
Vp_h		•	•	•	•
Vp_v		•	•	•	•

	Ret	Тр	Rp	Vp_h	Vp_v
Ret					
ᅀ		•	•	•	•
å					
Vp_h		•	•		•
V_dV		•	•	•	

ConnPlotter

Perspectives

ConnPlotter

ConnPlotter

- Python package
- Flexible generation of CPTs
- CPTs built from NEST Topology network specifications
- Use same code to build and draw models!


```
modelList = [('poisson_generator', 'P', {'rate': 10.0}),
             ('iaf neuron', 'E', {'C m': 200.0}),
                                 'I', {'C_m': 150.0})]
             ('iaf_neuron',
layerList = [('IG', {'columns': 40, 'rows': 40,
                     'extent': [1.0, 1.0],
                     'elements': 'P'}),
             ('RG', {'columns': 40, ..., 'elements': ['E'
connectList = [
    ('IG', 'RG',
    modCopy(common, {'connection_type': 'divergent',
                      'synapse_model' : 'static_synapse'
                      'targets': {'model': 'E'},
                      'mask' : {'circular': {'radius':
                      'kernel' : 0.8,
                      'weights': 2.0,
                      'delays' : 1.0})),
```

Connectivity Pattern

ConnPlotter

Perspectives

Drawing the CPTs

```
import ConnPlotter as cpl
s_cp = cpl.ConnectionPattern(layerList, connectList)
s_cp.plot()
s_cp.plot(normalize=True)
s_cp.plot (mode='layer')
s cp.plot(mode='totals')
s_cp.plot (mode='totals', normalize=True)
s_cp.plot(file='mycpt.eps')
cpt = cpl.ConnectionPattern(layerList, connectList,
      synTypes = ( ( cpl.SynType('AMPA', 1, 'red' ),
                    cpl.SynType('NMDA', 1, 'green')
                   (cpl.SynType('Dopa', 0.5, 'orange'),
                    cpl.SynType('Sero', 0.2, 'brown')
```

ConnPlotter

Perspectives

Creating the network

Pattern
Tables

ConnPlotter

Perspectives

ConnPlotter

Perspectives

- Not all kernels (even in NEST Topology) supported right now
- Non-square populations don't work 100% yet
- Non-centered projections not implemented
- Ignores boundary conditions
- Must become compatible with PyNN
- Do you like CPTs?

Collaborators

ConnPlotter 8 October 2009

Party!

Network Diagrams

Pattern
Tables

ConnPlotter

Eilen Nordlie

Marc-Oliver Gewaltig

