

 MOOSE to PyMOOSE:
Interfacing MOOSE with Python

Subhasis Ray

National Centre for Biological Sciences

Tata Institute of Fundamental Research

Bangalore, Karnataka, India

Upi

The People

Niraj

Raamesh

Genesis of MOOSE

GEneral NEural SImulation System has been serving for
neuronal and biochemical simulations for last 20 years.

It employed the idea of connecting the simulation entities
through messages.

The scripting language is dynamic – you can add and
delete fields to/from objects at runtime.

Imitated UNIX file-system tree convention to organize and
traverse objects (which are called elements).

All object access is path-based.

Genesis of MOOSE

The need for modernization was pressing, with obvious
limitations of the scripting language.

Some aspects of the GENESIS source code are
problematic.

“They did it by making the single
worst strategic mistake that
any software company can
make:

They decided to rewrite the code
from scratch.”

 - Joel Spolsky, Things You
Should Never Do, Part I

“All repairs tend to destroy the
structure, to increase the
entropy and disorder of the
system.”

 -Frederick P. Brooks, "The
Mythical Man-Month”

Problems with GENESIS

Messaging: implemented as linked list in genesis – forces
sequential traversal.

Scheduling: the scheduler looks through all objects to
check if it should be processed.

Encapsulation: Object safety was lacking – receiver of a
message would actually peep into the memory allocated
to the sender object to get message values.

Extension: To introduce a new object type one has to
prepare three associated files – C header, C source and a
genesis script. A preprocessor would look into the header
and create a mapping between object names and c
pointers.

The creation of MOOSE

Another misuse of Michelangelo's work : with due apology

GENESIS of MOOSE

 MOOSE (Multiscale Object Oriented Simulation
Environment) started as a backward compatible
successor of GENESIS.

 The core system has been written from scratch.

 The underlying architecture changed completely.

 MOOSE inherits GENESIS parser and can run GENESIS
scripts.

A sample session

create compartment /squid

setfield /squid Ra 7.6e6 \

 Rm 4.2e4 Cm 7.8e-9 \

 Em -0.07

create table /Vm

call /Vm TABCREATE \

 {RUNTIME / PLOTDT} 0 1

setfield /Vm step_mode 3

addmsg /squid /Vm INPUT Vm

setclock 0 {SIMDT}

setclock 1 {PLOTDT}

useclock /squid 0

useclock /Vm 1

reset

setfield /squid inject 0

step 0.005 -t

setfield /squid inject
{INJECT}

step 0.040 -t

setfield /squid inject 0

step 0.005 -t

tab2file squid.plot /Vm
table

quit

A sample session

create compartment /squid

setfield /squid Ra 7.6e6 \

 Rm 4.2e4 Cm 7.8e-9 \

 Em -0.07

create table /Vm

call /Vm TABCREATE \

 {RUNTIME / PLOTDT} 0 1

setfield /Vm step_mode 3

addmsg /squid /Vm INPUT Vm

setclock 0 {SIMDT}

setclock 1 {PLOTDT}

useclock /squid 0

useclock /Vm 1

reset

setfield /squid inject 0

step 0.005 -t

setfield /squid inject
{INJECT}

step 0.040 -t

setfield /squid inject 0

step 0.005 -t

tab2file squid.plot /Vm
table

quit

A sample session

create compartment /squid

setfield /squid Ra 7.6e6 \

 Rm 4.2e4 Cm 7.8e-9 \

 Em -0.07

create table /Vm

call /Vm TABCREATE \

 {RUNTIME / PLOTDT} 0 1

setfield /Vm step_mode 3

addmsg /squid /Vm INPUT Vm

setclock 0 {SIMDT}

setclock 1 {PLOTDT}

useclock /squid 0

useclock /Vm 1

reset

setfield /squid inject 0

step 0.005 -t

setfield /squid inject
{INJECT}

step 0.040 -t

setfield /squid inject 0

step 0.005 -t

tab2file squid.plot /Vm
table

quit

A sample session

create compartment /squid

setfield /squid Ra 7.6e6 \

 Rm 4.2e4 Cm 7.8e-9 \

 Em -0.07

create table /Vm

call /Vm TABCREATE \

 {RUNTIME / PLOTDT} 0 1

setfield /Vm step_mode 3

addmsg /squid /Vm INPUT Vm

setclock 0 {SIMDT}

setclock 1 {PLOTDT}

useclock /squid 0

useclock /Vm 1

reset

setfield /squid inject 0

step 0.005 -t

setfield /squid inject
{INJECT}

step 0.040 -t

setfield /squid inject 0

step 0.005 -t

tab2file squid.plot /Vm
table

quit

A sample session

create compartment /squid

setfield /squid Ra 7.6e6 \

 Rm 4.2e4 Cm 7.8e-9 \

 Em -0.07

create table /Vm

call /Vm TABCREATE \

 {RUNTIME / PLOTDT} 0 1

setfield /Vm step_mode 3

addmsg /squid /Vm INPUT Vm

setclock 0 {SIMDT}

setclock 1 {PLOTDT}

useclock /squid 0

useclock /Vm 1

reset

setfield /squid inject 0

step 0.005 -t

setfield /squid inject
{INJECT}

step 0.040 -t

setfield /squid inject 0

step 0.005 -t

tab2file squid.plot /Vm
table

quit

A sample session

create compartment /squid

setfield /squid Ra 7.6e6 \

 Rm 4.2e4 Cm 7.8e-9 \

 Em -0.07

create table /Vm

call /Vm TABCREATE \

 {RUNTIME / PLOTDT} 0 1

setfield /Vm step_mode 3

addmsg /squid /Vm INPUT Vm

setclock 0 {SIMDT}

setclock 1 {PLOTDT}

useclock /squid 0

useclock /Vm 1

reset

setfield /squid inject 0

step 0.005 -t

setfield /squid inject
{INJECT}

step 0.040 -t

setfield /squid inject 0

step 0.005 -t

tab2file squid.plot /Vm
table

quit

A sample session

create compartment /squid

setfield /squid Ra 7.6e6 \

 Rm 4.2e4 Cm 7.8e-9 \

 Em -0.07

create table /Vm

call /Vm TABCREATE \

 {RUNTIME / PLOTDT} 0 1

setfield /Vm step_mode 3

addmsg /squid /Vm INPUT Vm

setclock 0 {SIMDT}

setclock 1 {PLOTDT}

useclock /squid 0

useclock /Vm 1

reset

setfield /squid inject 0

step 0.005 -t

setfield /squid inject
{INJECT}

step 0.040 -t

setfield /squid inject 0

step 0.005 -t

tab2file squid.plot /Vm
table

quit

A sample session

create compartment /squid

setfield /squid Ra 7.6e6 \

 Rm 4.2e4 Cm 7.8e-9 \

 Em -0.07

create table /Vm

call /Vm TABCREATE \

 {RUNTIME / PLOTDT} 0 1

setfield /Vm step_mode 3

addmsg /squid /Vm INPUT Vm

setclock 0 {SIMDT}

setclock 1 {PLOTDT}

useclock /squid 0

useclock /Vm 1

reset

setfield /squid inject 0

step 0.005 -t

setfield /squid inject
{INJECT}

step 0.040 -t

setfield /squid inject 0

step 0.005 -t

tab2file squid.plot /Vm
table

quit

A sample session

create compartment /squid

setfield /squid Ra 7.6e6 \

 Rm 4.2e4 Cm 7.8e-9 \

 Em -0.07

create table /Vm

call /Vm TABCREATE \

 {RUNTIME / PLOTDT} 0 1

setfield /Vm step_mode 3

addmsg /squid /Vm INPUT Vm

setclock 0 {SIMDT}

setclock 1 {PLOTDT}

useclock /squid 0

useclock /Vm 1

reset

setfield /squid inject 0

step 0.005 -t

setfield /squid inject
{INJECT}

step 0.040 -t

setfield /squid inject 0

step 0.005 -t

tab2file squid.plot /Vm
table

quit

Architecture of MOOSE

 Three types of objects -

System objects

 constitute the backbone of the engine, e.g. Shell,
ClockJob, ClockTick etc.

Simulation entities

 representative of biophysical / biochemical objects that
represent the states / parameters we are studying

Utility objects

 provide various other functionalities like inspecting data,
interpolation, etc.

MOOSE Architecture

file

database

SBW/
other model

system

Derived from:
http://moose.ncbs.res.in/images/stories/architecture_65.jpg

C
o
m

m
a
n
d
 l
in

e
/s

cr
ip

ti
n
g
 i
n
te

rf
a
ce

The command line / scripting
interface is where modeler
interacts with MOOSE.

user

MOOSE Architecture

shellfile

database

SBW/
other model

system

Derived from:
http://moose.ncbs.res.in/images/stories/architecture_65.jpg

C
o
m

m
a
n
d
 l
in

e
/s

cr
ip

ti
n
g
 i
n
te

rf
a
ce

The user interface talks to

Shell - the single point of
access to all functionalities
available to the user

Not to be confused with the
idea of UNIX shell

user

MOOSE Architecture

shellfile

database

SBW/
other model

system

Derived from:
http://moose.ncbs.res.in/images/stories/architecture_65.jpg

C
o
m

m
a
n
d
 l
in

e
/s

cr
ip

ti
n
g
 i
n
te

rf
a
ce

Shell creates, deletes and
queries other MOOSE
objects.

It also executes the built-in
functionalities like file I/O.

user

Simulation entities

MOOSE Architecture

shellfile

database

SBW/
other model

system

Derived from:
http://moose.ncbs.res.in/images/stories/architecture_65.jpg

C
o
m

m
a
n
d
 l
in

e
/s

cr
ip

ti
n
g
 i
n
te

rf
a
ce

At start-up, the scheduling
system is initialized

user

Simulation entities

 scheduler

MOOSE Architecture

database

Derived from:
http://moose.ncbs.res.in/images/stories/architecture_65.jpg

shellfile

SBW/
other model

system

C
o
m

m
a
n
d
 l
in

e
/s

cr
ip

ti
n
g
 i
n
te

rf
a
ce

user

Simulation entities

 scheduler

MOOSE Architecture

database

Derived from:
http://moose.ncbs.res.in/images/stories/architecture_65.jpg

shellfile

SBW/
other model

system

C
o
m

m
a
n
d
 l
in

e
/s

cr
ip

ti
n
g
 i
n
te

rf
a
ce

user

Simulation entities

ClockJob

MOOSE Architecture

database

Derived from:
http://moose.ncbs.res.in/images/stories/architecture_65.jpg

shellfile

SBW/
other model

system

C
o
m

m
a
n
d
 l
in

e
/s

cr
ip

ti
n
g
 i
n
te

rf
a
ce

user

Simulation entities

ClockTick 0 ClockTick 0

ClockJob

MOOSE Architecture

shellfile

database

SBW/
other model

system

Derived from:
http://moose.ncbs.res.in/images/stories/architecture_65.jpg

C
o
m

m
a
n
d
 l
in

e
/s

cr
ip

ti
n
g
 i
n
te

rf
a
ce

Solvers can take over the
calculation of simulation
entities

user

Simulation entities

 scheduler

solvers

Solvers: Avoid the penalty of object
orientation

Compartment 1 Compartment 2 Compartment 3 Compartment 4

Tick0

Solvers: Avoid the penalty of object
orientation

Compartment 1 Compartment 2 Compartment 3 Compartment 4

Tick0

Solver

Solvers: Avoid the penalty of object
orientation

Compartment 1 Compartment 2 Compartment 3 Compartment 4

Tick0

Solver

MOOSE is young – but powerful

MOOSE runs many chemical kinetics simulations 40 to 50
times faster than GENESIS

Hines solver for branched neurons is under development -

 current version (without optimization) has reached at
least 50% the speed of the optimized solver of GENESIS.

Performance of MOOSE is competitive to other general
purpose simulators.

It is easy to add new classes to MOOSE. The API is developer
friendly.

MOOSE meets Python

The limitations of the GENESIS scripting language start
hurting as we go into larger models :

 need for a general purpose language was obvious.

Python seemed to be the best choice.

MOOSE meets Python

Write code to embed MOOSE into python or

make MOOSE a loadable library for python.

SWIG bridges the gap

 Several options for interface generator:
− Boost.Python – lots of features, but uses its own build

system “bjam”

− SIP – Trolltech's tool to make PyQt – but it is Qt
specific

− SWIG – Mature, active, easy to learn, can handle many
languages other than Python

How to do it with SWIG

 Additional C++ classes to wrap MOOSE classes

Create another layer of C++ code that talks to MOOSE
objects.

These are the classes actually seen by SWIG and made
available to Python.

This allows the MOOSE developer to be Python agnostic.

How to do it with SWIG – the path not taken

 Directly passing the source code to SWIG:

Not easy - not clean - the fields are not real C++ class
members, but more complex data structures.

Classes would not have the python-like feel

The MOOSE developer has to beware of what SWIG likes
and dislikes.

MOOSEPython

Architecture of PyMOOSE

ShellContext

MOOSEPython

Architecture of PyMOOSE

ShellContext
PyMooseBase

Id

MOOSEPython

Architecture of PyMOOSE

ShellContext
PyMooseBase

Id

Compartment

__get_Vm()
__set_Vm()

Channel

__get_Ik()
__set_Ik()

MOOSEPython

Architecture of PyMOOSE

ShellContext

Compartment

Id: 012345
__get_Vm()
__set_Vm()

Channel

Id: 042987
__get_Ik()
__set_Ik()

Compartment

Id: 012345

VmFinfo

Channel

Id: 042987

IkFinfo

Let the computer do it!

Given the infrastructure created with Context and Base
class, writing wrappers is easy.

 MOOSE statically initializes data structures for the fields in
the MOOSE classes. Exploited this to automate the
creation of wrapper classes.

 Pieces of code in Class-info initializer of MOOSE create
C++ header and source files as well as swig interface file
for PyMOOSE.

 Minor changes need to be introduced manually in the
generated code.

It's easy to convert to PyMOOSE

from moose import *
from math import *

EREST = -0.07

def calc_Na_m_A(v):
 if fabs(EREST+0.025-v) < 1e-6:
 v = v + 1e-6
 return 0.1e6 * (EREST + 0.025 -v) /
 (exp((EREST + 0.025 - v)/0.01) - 1.0)
...
squid = Compartment('squid')
squid.Rm = RM

for i in range(NDIVS+1):
Na.xGate.A[i] = calc_Na_m_A (v)

...

context = squid.getContext()
context.setClock(0, SIMDT, 0)
context.setClock(1, PLOTDT, 0)
...
squid.inject = INJECT
context.step(0.040)
from pylab import *
plot(Vm)
show()

float EREST = -0.07
...
function calc_Na_m_A(v)

float v
if ({ abs { EREST + 0.025 - v } } < 1e-6)

v = v + 1e-6
end
return { (0.1e6 * (EREST + 0.025 - v)) /

 ({ exp { (EREST + 0.025 - v)/ 0.01 } }
 - 1.0) }
end
...
create Compartment /squid
setfield /squid Rm {RM}
...
for (i = 0 ; i <= NDIVS; i = i + 1)

setfield /squid/Na/xGate/A table[{i}]
 { calc_Na_m_A { v } }
...
end
...
setclock 0 {SIMDT} 0
setclock 1 {PLOTDT} 0
...
setfield /squid inject {INJECT}
step 0.040 -t
setfield /Vm print "squid.plot"

Issues PyMOOSE faces

 Object life cycle management poses a major decision
problem – right now we are escaping the python
convention of object deletion on going outside scope

SWIG-generated-code uses lots of C++ pointers – the
related memory management issues do not pose any
problem yet – but it may need to be fine tuned.

Epilogue – what we have

MOOSE is capable of executing many GENESIS scripts with
little or no modification.

It takes moderate effort to plug other simulation programs
into MOOSE: already the SMOLDYN (Steve Andrews:
http://www.smoldyn.org) program has been
incorporated into MOOSE with help from Steve.

MOOSE has been designed with parallelization in mind:

the messaging architecture and unique object Id scheme
have been created for clean parallelization.

We also look forward to computer-grids: the uniprocessor
version has been run on EU-India Grid and Garuda grid.

Epilogue – what next?

 Plans for release 2
− Currently we are working on array-type objects which

will reduce the overhead of an array of simple objects.

− Instead of having element to element messaging,
array-messages will connect whole array-objects with
the connection rule.

− Solver is undergoing optimization and will be part of
this release.

 Plans for release 3
− Parallel version of MOOSE is undergoing

experimentation

Epilogue – further goals with PyMOOSE

MOOSE retains the GENESIS scripting interface for
backward compatibility. But it has more features which
are not handled by GENESIS scripting language.

Instead of extending the GENESIS scripting language, we
plan to switch to Python.

Use PyMoose to talk to other simulation softwares. We are
interested in standards for simulator interactions.

Compatibility with SBML and NeuroML. May use third party
libraries to read and write these dialects. But need to
bridge the conceptual gaps.

MOOSE is free software

 MOOSE is available at:
− http://moose.ncbs.res.in
− http://moose.sourceforge.net/

 Get latest development snapshot:

 svn co
http://moose.svn.sourceforge.net/svnroot/moose/moose/trunk
moose

 It is published under LGPL (Lesser GNU Public License).

http://moose.ncbs.res.in/
http://moose.sourceforge.net/
http://moose.svn.sourceforge.net/svnroot/moose/moose/trunk

Thanks to ...
 Guidance, comments and support :

Upi
Lab-mates

 Funding:
− DAE
− DBT
− NCBS/TIFR
− EU-India Grid project
− FACETS (travel bursary)
− NIH (Collaboration with Ravi Iyengar)

 CDAC – GARUDA Grid

