Git

a fast distributed revision control system

Eric Müller

UHEI

FACETS CodeJam #2 2008-05-06

Features

- distributed development model
 - gives each developer a local copy of the entire history
 - ⇒ disconnected operation
- good support for non-linear development
 - lightweight & fast branching
 - easy merging
 - private branches
- cryptographic authentication of history (git-tag -s -m "Message")

Features

- distributed development model
 - gives each developer a local copy of the entire history
 - ⇒ disconnected operation
- good support for non-linear development
 - lightweight & fast branching
 - easy merging
 - private branches
- cryptographic authentication of history (git-tag -s -m "Message")
- easy access to svn/svk upstream repositories (git-svn)
- cvsserver emulation

Features

- distributed development model
 - gives each developer a local copy of the entire history
 - ⇒ disconnected operation
- good support for non-linear development
 - lightweight & fast branching
 - easy merging
 - private branches
- cryptographic authentication of history (git-tag -s -m "Message")
- easy access to svn/svk upstream repositories (git-svn)
- cvsserver emulation

Now

internal structure of git

Git – Basic ideas

- Git manages a set of objects (revisions, files, directories, ...)
- Each object is identified by its SHA1 sum (e.g. 4cdeed861b5f797b3fa661eb331a6bd6ad669c6a)
- Objects can point to each other

- chunk of binary data, i.e. contents of files, symlinks, . . .
- identified by SHA1 (160 bits) checksum
- ⇒ one blob per file revision

- Tree
 - collection of blobs with filenames and (fs-) permissions
 - state of a directory hierarchy at a given revision/time

- Commit
 - contains a message and a tree object

- Commit
 - contains a message and a tree object
 - ullet pointers to ≥ 1 parent commits

Commit

- contains a message and a tree object
- ullet pointers to ≥ 1 parent commits
- branchname gets updated (HEAD too)

- Tag
 - points to a commit
 - contains an (optional cryptographically signed) message

- Tag
 - points to a commit
 - contains an (optional cryptographically signed) message
 - tagname

1 remote repository 0 revision a

- 1 remote repository 0 revision a
- ② adding a local commit mya into local mybranch based on a

- 1 remote repository @ revision a
- ② adding a local commit mya into local *mybranch* based on a
- some remote commits

- remote repository @ revision a
- ② adding a local commit mya into local *mybranch* based on a
- some remote commits
- merging remote commits into mybranch

- remote repository @ revision a
- ② adding a local commit mya into local *mybranch* based on a
- some remote commits
- merging remote commits into mybranch
- another remote commit

- remote repository @ revision a
- ② adding a local commit mya into local *mybranch* based on a
- some remote commits
- merging remote commits into mybranch
- another remote commit
- another merge from remote into local branch

- 💶 remote repository @ revision a
- ② adding a local commit mya into local *mybranch* based on a
- some remote commits
- merging remote commits into mybranch
- another remote commit
- another merge from remote into local branch
- another remote commit

- 💶 remote repository @ revision a
- adding a local commit mya into local mybranch based on a
- some remote commits
- merging remote commits into mybranch
- another remote commit
- another merge from remote into local branch
- another remote commit

more features

- #parents ≥ 2 and successive merging is possible
- instead of merging, rewriting history (rebasing) is also possible

Using Git

Integration

- VIM: vcscommand
 http://code.google.com/p/vcscommand/
- Trac: GitPlugin http://trac-hacks.org/wiki/GitPlugin
- Emacs: git.el (DVC is better?)
 http://www.emacswiki.org/cgi-bin/wiki/Git
- Eclipse: J/EGIT
 http://git.or.cz/gitwiki/EclipsePlugin

Using Git

Integration

- VIM: vcscommand http://code.google.com/p/vcscommand/
- Trac: GitPlugin http://trac-hacks.org/wiki/GitPlugin
- Emacs: git.el (DVC is better?)
 http://www.emacswiki.org/cgi-bin/wiki/Git
- Eclipse: J/EGIT
 http://git.or.cz/gitwiki/EclipsePlugin

Information

- Git SVN Crash Course
 http://git.or.cz/course/svn.html
- Git cheat sheet, extended edition
 http://jan-krueger.net/development/git-cheat-sheet-extended-edition

References

- good documentation (manpages, user- & developer tutorials)
- The guts of git http://lwn.net/Articles/131657/
- Git for Computer Scientists
 http://eagain.net/articles/git-for-computer-scientists/