

PyNN and the FACETS Hardware

Daniel Brüderle Heidelberg

FACETS Hardware: Recap

"Neuromorphic" Hardware: A physical model, not a simulation

- Intrinsically parallel, scalable, fast, ...
- Not an arbitrarily flexible substrate
 - fixed neuron model
 - limited ranges for neuron and synapse configuration parameters
 - limited resources
 - neuron number
 - connectivity / synapse number
 - max. firing rates
 - individual configurability

FACETS Hardware: Recap

- Three FACETS groups design and build neuromorphic hardware
 - Bordeaux: High-precision systems
 - mixed-signal VLSI HH model
 - real-time
 - ~ 10° 10° neurons
 - Heidelberg / Dresden: Large-scale accelerated system
 - mixed-signal VLSI I&F model
 - highly accelerated (speedup factor ~ 10⁴ 10⁵)
 - $\sim 10^2 10^6$ neurons
 - 2 stages of development...

Accelerated FACETS Hardware

Stage1 (chip-based):

Conductance-based I&F neurons

- 384 interconnectable neurons on each chip
- programmable connectivity
 - source, target, weight, tau_syn
- chips interconnectable
- STDP (analog, on-chip)
- short term dep / fac
- no spike-frequency adaptation

Accelerated FACETS Hardware

- Stage 2 (waferscale integration):
 Adaptive EIF a la Brette & Gerstner
 - ~ 10⁵ dendritic building blocks and
 ~ 10⁷ synapses per wafer
 - wafers interconnectable
 - STDP (digital, on-chip)
 - short term dep / fac

Status Hardware (May 2008)

- Stage 1: up and running
- Problems with analog parameter storage
 - temperature dependent leakage currents at synapses,
 also at voltage and current memory
 - hard to control e.g. STDP
 - hard to quantitatively compare results to e.g. NEST
- Only subset of neurons readable at the same time
- New, bug-fixed chip available since 1st of May
 - stable parameters
 - all neurons recordable at the same time

Status Hardware (May 2008)

- Stage 2: final stage of development
 - neuron and synapse model decided, prototype for parts of the model available (Stage 1 chip)
 - connectivity and routing issues decided, methods for network mapping existing, under further development and testing
 - new analog floating gate memory developed and successfully tested
 - wafer post-processing successfully tested
 - prototype for digital long-distance and off-wafer communication available
 - first full system expected during 2009

Why PyNN for the FACETS Hardware?

- Only little neuroscientific expertise in hardware groups
- Plan: Hardware as a useful research tool for modelers' community
 - statistics-intensive, large parameters sweeps, long-term learning, etc
 - interweaved hardware software co-simulation
- Needed: Access and usability for every FACETS member

Why PyNN for the FACETS Hardware?

- Python and PyNN provide
 - easy-to-learn, well documented user interface for non-hardware-specialists
 - experiment porting
 - quantitative result comparisons
 - e.g. for hardware model verification
 - analysis and post-processing tools
- Plans to adopt PyNN also for the Bordeaux hardware system and by e.g. Giacomo Indivery (DAISY)

Status *PyNN.hardware*

- Started with basic interface: Very hardware-specific C++ API
- At CodeJam #1: plain Python interface (boost), no connection to PyNN
- Now: PyNN supported as far as possible ("pyNN.hardware.stage1")
 - procedural API
 - hardware well hidden seems to behave like e.g. NEST, just faster;)
 - reasonable default values for hardware parameters
 - voltage recording via oscilloscope + c++-sockets + boost.python
 - after Code Sprint in Debrecen: Populations / Projections
 - standard output formats
 - neuron model IF_facets_hardware1
 - warnings / errors for constraints

PyNN

procedural and object-oriented API supported own neuron model

Hardware abstraction layer Object-oriented, user friendly, full chip functionality

Status *PyNN.hardware*

Drawbacks:

- no voltage recording of all neurons at the same time
- limited parameter ranges (weights, voltages, time constants...),
 hardly handled so far
- every run is different...
 - leakage
 - temperature
 - crosstalk
 - power supply
 - ...

Hardware Specific Implementations

- Temporal resolution ("timestep"): Sampling rate oscilloscope
- Additional parameters
 - work station (chip) selection
 - translation factors
 - weights
 - temporal speedup
 - mapping parameters
 - calibration data (files for every workstation)
- Unused parameters
 - min_delay, max_delay

PyNN.hardware in the Official Trunk?

- Plans as decided in Debrecen:
 Provide everyone with a lightweight dummy PyNN.hardware module
 - full PyNN.hardware module necessary only in Heidelberg
 - dummy module implements all errors and warnings that arise due to hardware specific constraints
 - for offline testing of scripts
 - run routine returns only "script executable" or "script not executable"

Further Plans

- Include Graph Model (for mapping networks to the hardware configuration space, see lightning talk by Johannes Bill)
- Clean handling of limited parameter ranges
- Memory management for large numbers of experiments
 - Direct correspondence / mapping from high level data structures to allocated experiment objects in hardware playback memory

Hardware Model Verification

