
MUSIC

Mikael Djurfeldt, PDC/KTH
HBP Neuromorphic SP

Outline
● Interfaces in computational neuroscience software
● What is MUSIC?
● Two problems solved by MUSIC:

● spatial aliasing problem
● temporal aliasing problem

● How to use MUSIC from C++, Python and PyNN
● Use cases
● Where to get software and documentation

Interfaces in computational
neuroscience

● Simulation environments in computational neuroscience,
such as NEURON, NEST or Brian, each provide many tools
needed by the user to carry out high-quality simulation studies.

● Models described differently,
environments have specific features
=> hard to move models

● Difficult to build larger simulations which re-use existing models

Interfaces in computational
neuroscience

● As systems grow and encompass more subsystems, they rapidly
become unwieldy to develop

● In general, software in computational neuroscience tends to have
a monolithic structure

● Software interfaces (APIs) allow for use of different implementations
of software components

● MUSIC is an API, and implementation in the form of a C++ library,
supporting flowing of data between tools during simulation

(INCF initiative, originally developed by Ö. Ekeberg and M. Djurfeldt)

MUSIC co-simulations

A co-simulation with multiple parallel applications (A, B, C)
exchanging runtime data (such as neuronal events)

Shipping data around between applications during simulation
useful e.g. for:
• Building larger models by combining models as components
• Modeling multiple scales and/or combining different

formalisms simultaneously
• Pre/postprocessing and visualization
• Interfacing to external hardware

Network simulation

Using MUSIC to expose
data

Co-simulation

Loop

Spatial aliasing problem

Spatial aliasing

Scheduling of
communication

Handling of time in MUSIC
• An application calls MUSIC tick() at points regularly spaced in

simulated time
• This is where data may be sent and/or received
• Different applications are allowed to call tick()at different rates
• MUSIC may allow applications to run out-of-sync (each with its own

offset between simulation time and wallclock time)
• MUSIC allows complex topology of port connectivity

Scheduling problem
• How to deliver data in time while avoiding deadlocks
• How to interpolate continuous data given different tick rates

Interfaces to MUSIC

C++ app: eventsource

C++ app: eventsource

C++ app: eventlogger

MUSIC configuration file

Interfaces to MUSIC

Python app: eventsource

Interfaces to MUSIC

Usage scenarios

Integrated simulation of the whole-body
musculo- skeletal-nervous system for
clarification of motor dysfunctions due to
neurological diseases

Jun Igarashi¹, Jan Moren¹, Osamu Shouno³, Kazuya
Shimizu², Naoto Yamamura², Junichiro Yoshimoto¹

Shu Takagi² & Kenji Doya¹

 1: Okiniwa Insitutiute of Science and Technology (OIST)

 2: Tokyo University

 3: Honda research Institute Japan

● Full size, neuron count of rat BG and motor
cortex. (~3.2 million neurons)

● Conductance-based IaF or Izhikevich-type
neuron models, static or STDP synapses.

● PyNEST and SLI models, connected with
MUSIC

● dDIMS: Volumetric FEM-based fluid-
mechanical muscle model, full skeletal
physics model

MUSIC organization
Sample patches/columns on each surface:

● L5BCS → Striatum: 50×50 patches
● L5BPT → Spinal cord: 20x20 patches

● Gpi/EP → Thalamus TC/HT: 1 neuron per
channel (3100 total)

● spinal cord → muscle: 1 motor neuron per
channel (~750/biceps, 1500/triceps)

● Up: GPe, STN and GPi neurons
oscillating at about 14.7Hz.

● Left: power spectrum of GPi,
Thalamic CT neurons and L5B PT
neurons.

preliminary results

Other highlighted use cases

● Bluebrain Monsteer
Library for interactive visualization

● MUSIC-ROS toolchain
Philipp Weidel Thursday 10:10

Where to get MUSIC
● Github INCF/MUSIC

● MUSIC manual in the distribution

● Djurfeldt et al. (2010) “Run-time interoperability between
neuronal network simulators based on the MUSIC framework”
Neuroinform.

Thanks
● Ekaterina Brocke, SciLife lab, KI – communication algorithms
● Alexander Peyser, Simlab neurosci, FZJ – Python interface
● Andrew Davison, Jochen Eppler and Eilif Muller – PyNN

interface
● Rajalekshmi Deepu, Simlab neurosci, FZJ – Travis integration
● Jan Morén, OIST – MUSIC application example
● INCF
● HBP
● Simlab neuroscience
● INM6, FZ Juelich

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

