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Outline
● Interfaces in computational neuroscience software
● What is MUSIC?
● Two problems solved by MUSIC:

● spatial aliasing problem
● temporal aliasing problem

● How to use MUSIC from C++, Python and PyNN
● Use cases
● Where to get software and documentation



Interfaces in computational 
neuroscience

● Simulation environments in computational neuroscience,
such as NEURON, NEST or Brian, each provide many tools
needed by the user to carry out high-quality simulation studies.

● Models described differently,
environments have specific features
=> hard to move models

● Difficult to build larger simulations which re-use existing models



Interfaces in computational 
neuroscience

● As systems grow and encompass more subsystems, they rapidly
become unwieldy to develop

● In general, software in computational neuroscience tends to have
a monolithic structure

● Software interfaces (APIs) allow for use of different implementations
of software components

● MUSIC is an API, and implementation in the form of a C++ library,
supporting flowing of data between tools during simulation

(INCF initiative, originally developed by Ö. Ekeberg and M. Djurfeldt)



MUSIC co-simulations

A co-simulation with multiple parallel applications (A, B, C) 
exchanging runtime data (such as neuronal events)

Shipping data around between applications during simulation 
useful e.g. for:
• Building larger models by combining models as components
• Modeling multiple scales and/or combining different 

formalisms simultaneously
• Pre/postprocessing and visualization
• Interfacing to external hardware



Network simulation



Using MUSIC to expose 
data



Co-simulation



Loop



Spatial aliasing problem



Spatial aliasing



Scheduling of 
communication

Handling of time in MUSIC
• An application calls MUSIC tick() at points regularly spaced in 

simulated time
• This is where data may be sent and/or received
• Different applications are allowed to call tick()at different rates
• MUSIC may allow applications to run out-of-sync (each with its own 

offset between simulation time and wallclock time)
• MUSIC allows complex topology of port connectivity

Scheduling problem
• How to deliver data in time while avoiding deadlocks
• How to interpolate continuous data given different tick rates



Interfaces to MUSIC



C++ app: eventsource



C++ app: eventsource



C++ app: eventlogger



MUSIC configuration file



Interfaces to MUSIC



Python app: eventsource



Interfaces to MUSIC





Usage scenarios



  

Integrated simulation of the whole-body 
musculo- skeletal-nervous system for 
clarification of motor dysfunctions due to 
neurological diseases

Jun Igarashi¹, Jan Moren¹, Osamu Shouno³, Kazuya 
Shimizu², Naoto Yamamura², Junichiro Yoshimoto¹

Shu Takagi²  & Kenji Doya¹

   1: Okiniwa Insitutiute of Science and Technology (OIST)

   2: Tokyo University

   3: Honda research Institute Japan



  

● Full size, neuron count of rat BG and motor 
cortex. (~3.2 million neurons)

● Conductance-based IaF or Izhikevich-type 
neuron models, static or STDP synapses.

● PyNEST and SLI models, connected with 
MUSIC

● dDIMS: Volumetric FEM-based fluid-
mechanical muscle model, full skeletal 
physics model



  

MUSIC organization
Sample patches/columns on each surface:

● L5BCS → Striatum: 50×50 patches
● L5BPT → Spinal cord: 20x20 patches

● Gpi/EP → Thalamus TC/HT: 1 neuron per 
channel (3100 total)

● spinal cord → muscle: 1 motor neuron per 
channel (~750/biceps, 1500/triceps)



  

● Up: GPe, STN and GPi neurons 
oscillating at about 14.7Hz.

● Left: power spectrum of GPi, 
Thalamic CT neurons and L5B PT 
neurons. 

preliminary results



Other highlighted use cases

● Bluebrain Monsteer
Library for interactive visualization

● MUSIC-ROS toolchain
Philipp Weidel Thursday 10:10



Where to get MUSIC
● Github INCF/MUSIC

● MUSIC manual in the distribution

● Djurfeldt et al. (2010) “Run-time interoperability between 
neuronal network simulators based on the MUSIC framework” 
Neuroinform.



Thanks
● Ekaterina Brocke, SciLife lab, KI – communication algorithms
● Alexander Peyser, Simlab neurosci, FZJ – Python interface
● Andrew Davison, Jochen Eppler and Eilif Muller – PyNN 

interface
● Rajalekshmi Deepu, Simlab neurosci, FZJ – Travis integration
● Jan Morén, OIST – MUSIC application example
● INCF
● HBP
● Simlab neuroscience
● INM6, FZ Juelich
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