
Current status and future plans for NeuroTools

Pierre Yger

BioEngineering Department, Imperial
College, London

March 15, 2012

1 of 22



The curse of the data

• Simulations and/or multiple recordings are nowadays common.

• Hundreds, thousands, even hundreds of thousands recordings.

• More and more complex analysis handling those massive data.

[Smith et al, 2008] [Blanche et al, 2005] [Izhikevich et al, 2007]

2 of 22



Analysis workflows

Direct consequence of this complexity:

→ Analysis/Workflows has to be standardised

→ It’s harder to be sure your code is doing what you want it to do

Several solutions to face this increase in complexity:

→ Work more: harder, better, stronger

→ Work more with people you trust (shared project)

→ Work less by using already coded tools (Let’s trust again)

→ Test or share your code with others to increase the confidence in it.

Solutions:
Simplify reuse of code by new tools/methods (svn, documentation,
tests, well-defined API) and common format

3 of 22



Analysis workflows

Direct consequence of this complexity:

→ Analysis/Workflows has to be standardised

→ It’s harder to be sure your code is doing what you want it to do

Several solutions to face this increase in complexity:

→ Work more: harder, better, stronger

→ Work more with people you trust (shared project)

→ Work less by using already coded tools (Let’s trust again)

→ Test or share your code with others to increase the confidence in it.

Solutions:
Simplify reuse of code by new tools/methods (svn, documentation,
tests, well-defined API) and common format

3 of 22



Analysis workflows

Direct consequence of this complexity:

→ Analysis/Workflows has to be standardised

→ It’s harder to be sure your code is doing what you want it to do

Several solutions to face this increase in complexity:

→ Work more: harder, better, stronger

→ Work more with people you trust (shared project)

→ Work less by using already coded tools (Let’s trust again)

→ Test or share your code with others to increase the confidence in it.

Solutions:
Simplify reuse of code by new tools/methods (svn, documentation,
tests, well-defined API) and common format

3 of 22



Analysis workflows

Direct consequence of this complexity:

→ Analysis/Workflows has to be standardised

→ It’s harder to be sure your code is doing what you want it to do

Several solutions to face this increase in complexity:

→ Work more: harder, better, stronger

→ Work more with people you trust (shared project)

→ Work less by using already coded tools (Let’s trust again)

→ Test or share your code with others to increase the confidence in it.

Solutions:
Simplify reuse of code by new tools/methods (svn, documentation,
tests, well-defined API) and common format

3 of 22



Analysis workflows

Direct consequence of this complexity:

→ Analysis/Workflows has to be standardised

→ It’s harder to be sure your code is doing what you want it to do

Several solutions to face this increase in complexity:

→ Work more: harder, better, stronger

→ Work more with people you trust (shared project)

→ Work less by using already coded tools (Let’s trust again)

→ Test or share your code with others to increase the confidence in it.

Solutions:
Simplify reuse of code by new tools/methods (svn, documentation,
tests, well-defined API) and common format

3 of 22



Analysis workflows

Direct consequence of this complexity:

→ Analysis/Workflows has to be standardised

→ It’s harder to be sure your code is doing what you want it to do

Several solutions to face this increase in complexity:

→ Work more: harder, better, stronger

→ Work more with people you trust (shared project)

→ Work less by using already coded tools (Let’s trust again)

→ Test or share your code with others to increase the confidence in it.

Solutions:
Simplify reuse of code by new tools/methods (svn, documentation,
tests, well-defined API) and common format

3 of 22



Analysis workflows

Direct consequence of this complexity:

→ Analysis/Workflows has to be standardised

→ It’s harder to be sure your code is doing what you want it to do

Several solutions to face this increase in complexity:

→ Work more: harder, better, stronger

→ Work more with people you trust (shared project)

→ Work less by using already coded tools (Let’s trust again)

→ Test or share your code with others to increase the confidence in it.

Solutions:
Simplify reuse of code by new tools/methods (svn, documentation,
tests, well-defined API) and common format

3 of 22



The current status of NeuroTools

NeuroTools was initiated during the FACETS projects, aiming to:

1 increase the productivity of modellers by automating, simplifying,
and establishing best-practices for common tasks

2 increase the productivity of the modelling community by reducing
code duplication

3 increase the reliability of the tools, leveraging Linus’s law: “given
enough eyeballs, all bugs are shallow”

Current Status:
Still not ’stable’, not modular enough, should be simplified.

4 of 22



The need for a common format

Some Simulators
• Brian brian.di.ens.fr/

• Catacomb www.catcmb.org

• CSIM www.lsm.tugraz.at/csim

• GENESIS www.genesis-sim.org

• Matlab www.mathworks.com

• Mvaspike mvaspike.gforge.inria.fr

• Neosim www.neurogems.org/neosim2

• NEST www.nest-initiative.org

• NEURON www.neuron.yale.edu

• Neurospaces neurospaces.sourceforge.net

• SpikeNET www.spikenet-technology.com

• SPLIT

• Topographica topographica.org

• Your home made one

• ...

Some Analysis tools
• Spike Train Analysis Toolkit

neuroanalysis.org/toolkit/intro.html

• Spike Toolbox
www.ini.uzh.ch/d̃ylan/spike toolbox

• MEA-Tools material.brainworks.uni-freiburg.de

• Spike train analysis software
www.blki.hu/s̃zucs/OS3.html

• NeuroExplorer www.adinstruments.com

• Spike Train Analysis with R (STAR)
sites.google.com/site/spiketrainanalysiswithr/

• OpenElectrophy
http://neuralensemble.org/trac/OpenElectrophy

• FIND http://find.bccn.uni-freiburg.de/

• Your home made one

• ...

5 of 22



neo: the chosen one

• generic container

• extensible

• r/w common formats

• handle quantities

• match various needs
◦ real recordings
◦ simulations

• link with
OpenElectrophy

• (wait for tomorrow)

6 of 22



The NeuroTools Structure

• Particular attention on documentation, to make functions usable

• Tests tend to be systematic (currently > 80% of coverage)

7 of 22



NeuroTools.stgen

Efficient generation of time varying signals

• (in)homogeneous poisson/gamma processes

• Orstein Ulbeck processes

• Shot noise

• ...

8 of 22



NeuroTools.parameters

Deal with the parameter mess in simulations

• Good practice to separate the parameters from the model itself.

• At least, parameters should be in a separate section of a file.

Advantages

→ Helps version control, as model vs parameter changes can be
conceptually separated

→ Make it easier to track a simulation project, since the parameter
sets can be stored in a database, displayed in a GUI, etc.

→ Consolidate the reproducibility of the results (alternatives:
sumatra)

9 of 22



The ParameterSet class

ParameterSet objects may be created from a dict:

>> sim_params = ParameterSet({’dt’: 0.11, ’tstop’: 1000.0})

They may be nested:

>> I_params = ParameterSet({’tau_m’: 15.0, ’cm’: 0.75})

>> network_params = ParameterSet({

... ’excitatory_cells’: E_params,

... ’inhibitory_cells’: I_params})

>> P = ParameterSet({’sim’: sim_params,

... ’network’: network_params},

... label="my_params")

10 of 22



Parameter spaces

>> P = ParameterSpace({

... ’cm’: 1.0,

... ’tau_m’: ParameterRange([10.0, 15.0, 20.0])

... })

>> for p in P.iter_inner():

... print p

...

{’tau_m’: 10.0, ’cm’: 1.0}

{’tau_m’: 15.0, ’cm’: 1.0}

{’tau_m’: 20.0, ’cm’: 1.0}

11 of 22



Parameter distributions

>> P = ParameterSpace({

... ’cm’: 1.0,

... ’tau_m’: NormalDist(mean=12.0, std=5.0)

... })

>> for p in P.realize_dists(2):

... print p

...

{’tau_m’: 20.237970275471028, ’cm’: 1.0}

{’tau_m’: 10.068110582245506, ’cm’: 1.0}

12 of 22



NeuroTools.signals

Dealing with event signals:

• SpikeTrain

• SpikeList

And with analog signals

• AnalogSignal

• AnalogSignalList

◦ MembraneTraceList
◦ CurrentTraceList
◦ ConductanceTraceList

→ All merged into a single class Segment to match the neo syntax

13 of 22



The SpikeTrain objects

Object to handle the spikes produced by one cell during [tstart, tstop]

• duration(), time slice(), time offset()

• isi(), mean rate(), cv isi()

• raster plot()

• time histogram(), psth()

• distance victorpurpura(), distance kreuz(()

• merge()

• ...

→ Distances should be separated
→ Functions instead of methods for less code duplication

14 of 22



The SpikeList class

object to handle the spikes produced by several cells during
[tstart, tstop]

• More or less a dictionnary of SpikeTrains

• Cells have unique id

• They could be aranged on a grid for graphical purpose

>> spikes = SpikeList(data, id_list=range(10000), t_start=0,

t_stop=500, dims=[100,100])

>> spikes[245].mean_rate()

15 of 22



The SpikeList class

• All SpikeTrain functions can be called

• Easy way of slicing, either by id, time or even by user-defined conditions.

• Easy way of building SpikeTrain from your own fileformats

• Pairs generators to average functions over custom-defined pairs:

◦ pairwise cc(), pairwise pearson corrcoeff(), ...

• Graphical functions: raster plot(), activity maps and movies for 2D
SpikeList, ...

16 of 22



The SpikeList class

>> all_spikes = load_spikelist(’data.gdf’, t_start=0, t_stop=500,

dims=[65,65])

>> ids = all_spikes.select_ids(’cell.mean_rate() > 10’)

>> my_spikes = all_spikes.id_slice(ids)

>> my_spikes.firing_rate(time_bin=5, display=subplot(131))

>> my_spikes.raster_plot(1000, display=subplot(132))

>> my_spikes.activity_map(display=subplot(133))

17 of 22



The SpikeList class

Pairs Selectors: Random, Auto, DistantDependent, ...

>> pairs = RandomPairs(all_spikes, all_spikes, no_silent=True)

>> spikes.pairwise_cc(5000, pairs, time_bin=5)

>> x = spikes.pairwise_pearson_corrcoeff(5000, pairs, time_bin=5)

>> hist(x, 100)

18 of 22



The AnalogSignal(List) class

Object to handle analog signals produced during [tstart, tstop], with
sampling time dt.

• duration(), time slice(), time offset()

• threshold detection, event triggered average()

• slice by events()

• ...

>> signal = sin(arange(0, 1000, 0.1))

>> x = AnalogSignal(signal, dt=0.1)

>> spk = SpikeTrain(arange(0,1000,100))

>> x.event_triggered_average(spk,

average=False, t_min=20, t_max=20)

19 of 22



New syntax

After the CodeJam, we should have:

>> data = neo.PyNNNumpyIO("simulation.npy")

>> data.read segment()

>> mean rate(data)

>> psth(data, events=[10, 250, 350])

>> subdata = data.time_slice(2000, 5000)

>> raster_plot(subdata)

20 of 22



Further extensions

• Consolidate the NeuroTools structure:
◦ Simplify the API
◦ Finish the transition towards Segment objects
◦ Clarify all dependencies and simplify the addition of extra functions.
◦ Have a look around (nibabel/nipy fMRI community)

• Add more sophisticated analysis functions:
◦ More sharing and reuse of code
◦ Gain in confidence and correctness

• Enlarge the community

21 of 22



Questions ?

To give a try: http://www.neuralensemble.org

Download, install, play, and contribute !

Contributors
Daniel Bruederle, Andrew Davison, Samuel Garcia, Jens Kremkow,
Eilif Muller, Laurent Perrinet, Michael Schmuker

22 of 22

http://www.neuralensemble.org

	More and more data...
	NeuroTools Structure
	NeuroTools.stgen
	NeuroTools.parameters
	NeuroTools.signals


