
March 16, 2012 | Jochen Martin Eppler

BrainScaleS CodeJam #5, Edinburgh

M
it

g
lie

d
 d

e
r

H
e
lm

h
o
lt

z-
G

e
m

e
in

sc
h

a
ft

The NEST code generation
roadmap: rationale and methods

March 16, 2012 Slide 2

Outline

 Reasons for code generation

 The neural simulation tool NEST

 Problems with our current way of writing code

 State of code generation from lib9ML for NEST

 Performance considerations

 Open questions, outlook and discussion

March 16, 2012 Slide 3

”If syntactic sugar didn't count, we'd all be
programming in assembly language.“

C++ Template Metaprogramming: Concepts, Tools, and Techniques from Boost and
Beyond - David Abrahams, Aleksey Gurtovoy

March 16, 2012 Slide 4

Why do we need code generation?

 Driven by advances in neuroscience, our simulation software becomes
more and more complex

■ More neuron and synapse models with higher complexity

■ New modeling directions require more complex networks

■ Larger machines are required to simulate larger networks

 Programming languages with higher levels of abstraction are one
possibility to master the complexity

 Model descriptions (e.g. NineML, NeuroML) are another

 High-level descriptions should not have to be interpreted at run-time,
but should be compiled to or at least handed over to simulators

March 16, 2012 Slide 5

The neural simulation tool NEST

 NEST is a simulator for spiking neural networks

■ Distributed and multi-threaded simulation

■ Development driven by neuroscientific needs

 Neuron and synapse model types have to be written in C++

■ This requires users to know some internals of NEST

■ New models are often created from existing models

■ Custom models can be defined in modules and loaded at run-time

 The research focus shifts further towards large-scale simulations

March 16, 2012 Slide 6

Why model development in NEST is broken

 Neuron and synapse models are not simulator independent

 Updates of the internal API require changes in all standard models

■ This reduces maintainability and increases the risk of error

■ Most of the model code is boilerplate code

 NEST's architecture for coupling synapses and neurons only allows
one synapse to be in between

■ It is impossible to combine synapse types, even though the code
for the single types may be there

■ Code Generation allows a merge of multiple types

 Multiple code paths are currently defined in a single file using ifdefs

March 16, 2012 Slide 7

Python, PyNN, NineML and beyond

 With Python, the scientific community has a language with outstanding
readability and superior productivity (cf. Prechelt, 2000)

 With PyNN, the computational neuroscience has a solid tool for
specifying neural network models

 With NineML, a standard for neural network model descriptions is on
its way

 The next logical step is to generate implementations from high-level
model descriptions

 Code generation is the right step in this direction

March 16, 2012 Slide 8

Code generation

 Generative/automatic programming is all about bringing the benefits of
automation to software development

 Automatic code generation allows to write code faster, as only a high-
level description has to be provided

 Several approaches exist:

■ Generators

■ Computer-aided software engineering

■ Domain-specific languages

■ Metaprogramming (e.g. C++ templates)

March 16, 2012 Slide 9

Code generation

Manually implement

System
requirements

System source code
in general-purpose

language

System
implementation

Compile

System
requirements

System source code
in general-purpose

language

System
implementation

Manually implement

Compile

System source using
domain-specific

language

Compile

System
requirements

System source code
in general-purpose

language

System
implementation

Manually implement

Compile

System source using
domain-specific

language

Compile

High-level system
specification

Implement with interactive support

March 16, 2012 Slide 10

Code generation

 A generator is a program that takes a higher-level specification of a
piece of software and produces its implementation

 Different kinds of generators exist:

■ Written from scratch (e.g. using bash or Python). NEST already
uses this technique to write header files during configuration

■ Based on the metaprogramming facilities of a programming
language. NEST heavily uses C++ templates

■ Using a generator infrastructure. For example a user interface
designer

■ Using a template engine, which does text based replacements

March 16, 2012 Slide 11

Code generation

 Written from scratch

#! /bin/bash
echo "#include <iostream>"
echo "main() { std::cout << \"$1\" << std::endl; }"

 Using the metaprogramming facilities of a programming language

#include <iostream>
#include <string>
template <class T> T sum(T a, T b) { return a+b; }
main() {
 std::cout << sum(1.0, 2.0) << std::endl;
 std::cout << sum(1, 2) << std::endl;
}

March 16, 2012 Slide 12

Excursion to lib9ML

 lib9ML is a simulator independent object model describing the different
elements of network models

 Dynamics are described by a set of state variables, regimes and
transitions combined in a regime graph

March 16, 2012 Slide 13

State of lib9ML code generation for NEST

 A prototype for generating neuron models was provided by Eilif Muller

 Based on Cheetah, a text-based template engine for Python

 The notion of regimes and transitions maps nicely on how NEST likes
to see its neuron models

 Susanne Kunkel and Abigail Morrison changed the template for
neurons to make a compilable file for synapses

 For synapse models, the notion of regimes and transitions is a less
good match

■ Regimes are expressed as ODEs, which are time-driven

■ NEST thinks about synapse in an event-driven fashion

March 16, 2012 Slide 14

State of lib9ML code generation for NEST

 A prototype for generating neuron models was provided by Eilif Muller

 Based on Cheetah, a text-based template engine for Python

 The notion of regimes and transitions maps nicely on how NEST likes
to see its neuron models

 Susanne Kunkel and Abigail Morrison changed the template for
neurons to make a compilable file for synapses

 For synapse models, the notion of regimes and transitions is a less
good match

■ Regimes are expressed as ODEs, which are time-driven

■ NEST thinks about synapse in an event-driven fashion

March 16, 2012 Slide 15

State of lib9ML code generation for NEST

[Have a look at the templates]

March 16, 2012 Slide 16

State of lib9ML code generation for NEST

 Code generation still involves some manual steps

■ Creating the lib9ML description

■ Generating C++ code from the high-level description

■ Adding the code to MyModule

■ Dynamically load MyModule in NEST at run-time

 PyNEST needs functions to allow the user to specify models in a
convenient way

 A just-in-time compilation infrastructure is needed

March 16, 2012 Slide 17

Problems with lib9ML and text-based code generation

 lib9ML is simulator agnostic by design

 Things like syntax and type checks are only performed later in the
development cycle

 Decision for the right solvers can be hard, optimizations even harder

 Things like consistency and range checks for variables or variables
defined relative to each other are hard

 Implementation details (e.g. different buffers for inh./exc. Spikes)
cannot be expressed

 Searching for errors may become more complex as more levels of
software are involved

March 16, 2012 Slide 18

Benefits of using code generation

 Speed: C/C++ is (much) faster than Python or interpreting XML

 Usability: Writing Python/XML is easier than C/C++ (Prechelt, 2000)

 Reduce the boiler-plate code that has to be written for each model

 Reduce the error-prone-ness of the code

 Improve the maintainability of the code

 Does a high-level description without much annotation allow the
generation of optimal code at the level of machine code?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

