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For us:

low-level code
many many layers

make = major pain

What we expect from our build system:
flexibility

integration of existing workflows
access to well established libraries
extensibility

power
usability
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The WAF build system

Introduction

Autotools (GNU Build System)

GNU Build System

+ few dependencies on user side
(shell scripts)

+ generates standard make files
+ widely used

– platform dependent (bash
scripts)

– autoconf-configure is slow
Often: tconfigure >> tmake.

– another scripting language

developer

user

autoscan

configure.ac

autoconf

aclocal autoheader

configure

aclocal.m4 config.h.in

Makefile.am

automake

Makefile.in

ed

Makefile

make
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The WAF build system

Introduction

CMake

CMake

+ generates standard make files
+ platform independent
+ cross compilation
+ parallel build

– CMake scripting language
– file content change detection via fs time stamp

Projects using CMake: Boost, Blender, LLVM, KDE, MySQL, . . .
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The WAF build system

WAF

why WAF?

Why WAF?
project configuration, building, installation, uninstallation

packaging & package checks for redistribution
ease of python (WAF comes with batteries) - no need for another
language
Waf is a 90kb script to execute (no installation required)
integrates unit testing into the build flow
supports build variants
Good documentation & active development
Fast and small memory footprint

as fast as make and 15x faster than SCons
10x less function calls than SCons
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The WAF build system

WAF

why WAF?

Samba 4

Build time 5min ⇒ 35s

Build size reduction
check object file duplication
extensive shared-object and rpath use

full dependency checks
cleaner build rules
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The WAF build system

WAF

wscript for this presentation

wscript for this presentation

#!/usr/bin/env python
# encoding: utf -8

APPNAME="CodeJam4_WAF_pres"

top=’.’

def configure(context ):
context.check_tool("tex")

def build(context ):
context.new_task_gen(

features = "tex",
source = "main.tex",
)
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The WAF build system

WAF

basic structure

basic structure

#!/usr/bin/env python
APPNAME=’basic_structure ’
VERSION=’0.1’
top=’.’

def configure(context ):
pass

def build(context ):
pass
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The WAF build system

WAF

Installing WAF

Installation
no installation needed

Interpreter: installed version will not run on Python 3 yet
OS: platform independence

Admin: installation is cumbersome, and requires admin privileges
Versions: avoid version conflicts (too old, too new, bugs)

Size: the WAF file is small enough to be redistributed (about 90kB)
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The WAF build system

WAF

Configuration Phase

Configuration Phase (example1)

def configure(context ):
from Configure import ConfigurationError
try:

context.find_program ([’touch ’, ’ls’], \
mandatory=True)

context.find_program(’echo’, var=’ECHO’, \
mandatory=True)

except ConfigurationError:
context.check_message_2("programs not found")

print context.env[’ECHO’]

# execute custom tool
context.check_tool(’my_tool ’, tooldir=’.’)
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The WAF build system

WAF

Configuration Options

Option Parser

def set_options(context ):
context.add_option(’--foo’, action=’store’, \

default=False , help=’Silly test’)

# c++ compiler path
opt.tool_options(’compiler_cxx ’)

# python interpreter path
opt.tool_options(’python ’)

def configure(context ):
import Options
print(’the value of foo is %r’ % Options.options.foo)

easy to add options
values are stored in the context variable
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The WAF build system

WAF

Build Phase

Task System

def build(context ):

commands: build, clean, install and uninstall call build()
⇒ isolate targets from actual code

Execution control: targets are evaluated lazily
Parallel: task scheduling

FS abstraction: e.g. distributed build
Language abstraction: flexibility and extensibility
Shell abstraction: platform independence
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The WAF build system

WAF

Build Phase

Task Abstraction Layer
abstraction layer between code execution (task) and declaration (task
generators):

Task:
abstract transformation unit
sequential constraints
require scheduler for parallel execution

Task generator:
factory tasks creation
Handle global constraints
(across tasks)

configuration set access
data sharing
OS abstraction
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The WAF build system

WAF

Build Phase

#!/usr/bin/env python
APPNAME=’example2a ’ # Task Generator
VERSION=’0.1337 ’

build_rule=’gcc ${SRC} -o ${TGT}’

import TaskGen
TaskGen.declare_chain(

rule = build_rule ,
ext_in = ’.c’,
ext_out = ’’,
reentrant = False)

def configure(context ): pass

def build(context ):
context(source=’t0.c’, target=’t0’, rule=build_rule)
context.new_task_gen(source=’t1.c’,

target=’t1’,rule=build_rule)
context(source=’t2.c’)
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The WAF build system

WAF

Build Phase

c/c++ support routines

#!/usr/bin/env python
APPNAME=’example2b ’ # Task Generator
VERSION=’0.1337 ’

def set_options(context ):
context.tool_options(’compiler_cc ’)

def configure(context ):
context.check_tool(’compiler_cc ’)

def build(context ):
context(target=’t’, source=’t.c’, features=’cc cprogram ’)
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The WAF build system

WAF

task translation

example4: demo

#!/usr/bin/env python
APPNAME=’example4 ’ # shell usage & task translation
VERSION=’0.1337 ’

def configure(context ): pass

def build(bld):
bld(rule=’cp ${SRC} ${TGT}’, source=’wscript ’,

target=’f1.txt’, shell=False)
bld(rule=’cp ${SRC} ${TGT}’, source=’wscript ’,

target=’f2.txt’, shell=True)

# commands containing ’>’,’<’ or ’&’ can not be executed natively without shell
# => FALLBACK: shell usage
bld(rule=’cat ${SRC} > ${TGT}’, source=’wscript ’,

target=’f3.txt’, shell=False)

# cmd: python waf distclean configure build --zones=runner ,action
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The WAF build system

WAF

interacting with the Filesystem through WAF

FS interaction

def build(context ):
context.root # root (/) node
context.path # current (.) node

etc = context.root.find_dir(’/etc’)
fstab = context.root.find_resource(’/etc/fstab’)
context.root.ant_glob(’etc /**/g*’, dir=True ,

src=False , bld=False)

Ant Globs (http://ant.apache.org/manual/dirtasks.html)
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