
The WAF build system

The WAF build system

Sebastian Jeltsch

Electronic Vision(s)
Kirchhoff Institute for Physics

Ruprecht-Karls-Universität Heidelberg

31. August 2010

Sebastian Jeltsch The WAF build system 31. August 2010 1 / 19

The WAF build system

Introduction

WorkBuildflow

Sebastian Jeltsch The WAF build system 31. August 2010 2 / 19

The WAF build system

Introduction

WorkBuildflow
For us:

low-level code
many many layers

make = major pain

What we expect from our build system:
flexibility

integration of existing workflows
access to well established libraries
extensibility

power
usability

Sebastian Jeltsch The WAF build system 31. August 2010 3 / 19

The WAF build system

Introduction

WorkBuildflow
For us:

low-level code
many many layers

make = major pain

What we expect from our build system:
flexibility

integration of existing workflows
access to well established libraries
extensibility

power
usability

Sebastian Jeltsch The WAF build system 31. August 2010 3 / 19

The WAF build system

Introduction

WorkBuildflow
For us:

low-level code
many many layers

make = major pain

What we expect from our build system:
flexibility

integration of existing workflows
access to well established libraries
extensibility

power
usability

Sebastian Jeltsch The WAF build system 31. August 2010 3 / 19

The WAF build system

Introduction

Autotools (GNU Build System)

GNU Build System

+ few dependencies on user side
(shell scripts)

+ generates standard make files
+ widely used

– platform dependent (bash
scripts)

– autoconf-configure is slow
Often: tconfigure >> tmake.

– another scripting language

developer

user

autoscan

configure.ac

autoconf

aclocal autoheader

configure

aclocal.m4 config.h.in

Makefile.am

automake

Makefile.in

ed

Makefile

make

Sebastian Jeltsch The WAF build system 31. August 2010 4 / 19

The WAF build system

Introduction

CMake

CMake

+ generates standard make files
+ platform independent
+ cross compilation
+ parallel build

– CMake scripting language
– file content change detection via fs time stamp

Projects using CMake: Boost, Blender, LLVM, KDE, MySQL, . . .

Sebastian Jeltsch The WAF build system 31. August 2010 5 / 19

The WAF build system

WAF

WAF

Sebastian Jeltsch The WAF build system 31. August 2010 6 / 19

The WAF build system

WAF

why WAF?

Why WAF?
project configuration, building, installation, uninstallation

packaging & package checks for redistribution
ease of python (WAF comes with batteries) - no need for another
language
Waf is a 90kb script to execute (no installation required)
integrates unit testing into the build flow
supports build variants
Good documentation & active development
Fast and small memory footprint

as fast as make and 15x faster than SCons
10x less function calls than SCons

Sebastian Jeltsch The WAF build system 31. August 2010 7 / 19

The WAF build system

WAF

why WAF?

Why WAF?
project configuration, building, installation, uninstallation
packaging & package checks for redistribution

ease of python (WAF comes with batteries) - no need for another
language
Waf is a 90kb script to execute (no installation required)
integrates unit testing into the build flow
supports build variants
Good documentation & active development
Fast and small memory footprint

as fast as make and 15x faster than SCons
10x less function calls than SCons

Sebastian Jeltsch The WAF build system 31. August 2010 7 / 19

The WAF build system

WAF

why WAF?

Why WAF?
project configuration, building, installation, uninstallation
packaging & package checks for redistribution
ease of python (WAF comes with batteries) - no need for another
language

Waf is a 90kb script to execute (no installation required)
integrates unit testing into the build flow
supports build variants
Good documentation & active development
Fast and small memory footprint

as fast as make and 15x faster than SCons
10x less function calls than SCons

Sebastian Jeltsch The WAF build system 31. August 2010 7 / 19

The WAF build system

WAF

why WAF?

Why WAF?
project configuration, building, installation, uninstallation
packaging & package checks for redistribution
ease of python (WAF comes with batteries) - no need for another
language
Waf is a 90kb script to execute (no installation required)

integrates unit testing into the build flow
supports build variants
Good documentation & active development
Fast and small memory footprint

as fast as make and 15x faster than SCons
10x less function calls than SCons

Sebastian Jeltsch The WAF build system 31. August 2010 7 / 19

The WAF build system

WAF

why WAF?

Why WAF?
project configuration, building, installation, uninstallation
packaging & package checks for redistribution
ease of python (WAF comes with batteries) - no need for another
language
Waf is a 90kb script to execute (no installation required)
integrates unit testing into the build flow

supports build variants
Good documentation & active development
Fast and small memory footprint

as fast as make and 15x faster than SCons
10x less function calls than SCons

Sebastian Jeltsch The WAF build system 31. August 2010 7 / 19

The WAF build system

WAF

why WAF?

Why WAF?
project configuration, building, installation, uninstallation
packaging & package checks for redistribution
ease of python (WAF comes with batteries) - no need for another
language
Waf is a 90kb script to execute (no installation required)
integrates unit testing into the build flow
supports build variants

Good documentation & active development
Fast and small memory footprint

as fast as make and 15x faster than SCons
10x less function calls than SCons

Sebastian Jeltsch The WAF build system 31. August 2010 7 / 19

The WAF build system

WAF

why WAF?

Why WAF?
project configuration, building, installation, uninstallation
packaging & package checks for redistribution
ease of python (WAF comes with batteries) - no need for another
language
Waf is a 90kb script to execute (no installation required)
integrates unit testing into the build flow
supports build variants
Good documentation & active development

Fast and small memory footprint
as fast as make and 15x faster than SCons
10x less function calls than SCons

Sebastian Jeltsch The WAF build system 31. August 2010 7 / 19

The WAF build system

WAF

why WAF?

Why WAF?
project configuration, building, installation, uninstallation
packaging & package checks for redistribution
ease of python (WAF comes with batteries) - no need for another
language
Waf is a 90kb script to execute (no installation required)
integrates unit testing into the build flow
supports build variants
Good documentation & active development
Fast and small memory footprint

as fast as make and 15x faster than SCons
10x less function calls than SCons

Sebastian Jeltsch The WAF build system 31. August 2010 7 / 19

The WAF build system

WAF

why WAF?

Samba 4

Build time 5min ⇒ 35s

Build size reduction
check object file duplication
extensive shared-object and rpath use

full dependency checks
cleaner build rules

Sebastian Jeltsch The WAF build system 31. August 2010 8 / 19

The WAF build system

WAF

why WAF?

Samba 4

Build time 5min ⇒ 35s
Build size reduction

check object file duplication
extensive shared-object and rpath use

full dependency checks
cleaner build rules

Sebastian Jeltsch The WAF build system 31. August 2010 8 / 19

The WAF build system

WAF

why WAF?

Samba 4

Build time 5min ⇒ 35s
Build size reduction

check object file duplication
extensive shared-object and rpath use

full dependency checks

cleaner build rules

Sebastian Jeltsch The WAF build system 31. August 2010 8 / 19

The WAF build system

WAF

why WAF?

Samba 4

Build time 5min ⇒ 35s
Build size reduction

check object file duplication
extensive shared-object and rpath use

full dependency checks
cleaner build rules

Sebastian Jeltsch The WAF build system 31. August 2010 8 / 19

The WAF build system

WAF

wscript for this presentation

wscript for this presentation

#!/usr/bin/env python
encoding: utf -8

APPNAME="CodeJam4_WAF_pres"

top=’.’

def configure(context):
context.check_tool("tex")

def build(context):
context.new_task_gen(

features = "tex",
source = "main.tex",
)

Sebastian Jeltsch The WAF build system 31. August 2010 9 / 19

The WAF build system

WAF

basic structure

basic structure

#!/usr/bin/env python
APPNAME=’basic_structure ’
VERSION=’0.1’
top=’.’

def configure(context):
pass

def build(context):
pass

Sebastian Jeltsch The WAF build system 31. August 2010 10 / 19

The WAF build system

WAF

Installing WAF

Installation
no installation needed

Interpreter: installed version will not run on Python 3 yet
OS: platform independence

Admin: installation is cumbersome, and requires admin privileges
Versions: avoid version conflicts (too old, too new, bugs)

Size: the WAF file is small enough to be redistributed (about 90kB)

Sebastian Jeltsch The WAF build system 31. August 2010 11 / 19

The WAF build system

WAF

Configuration Phase

Configuration Phase (example1)

def configure(context):
from Configure import ConfigurationError
try:

context.find_program ([’touch ’, ’ls’], \
mandatory=True)

context.find_program(’echo’, var=’ECHO’, \
mandatory=True)

except ConfigurationError:
context.check_message_2("programs not found")

print context.env[’ECHO’]

execute custom tool
context.check_tool(’my_tool ’, tooldir=’.’)

Sebastian Jeltsch The WAF build system 31. August 2010 12 / 19

The WAF build system

WAF

Configuration Options

Option Parser

def set_options(context):
context.add_option(’--foo’, action=’store’, \

default=False , help=’Silly test’)

c++ compiler path
opt.tool_options(’compiler_cxx ’)

python interpreter path
opt.tool_options(’python ’)

def configure(context):
import Options
print(’the value of foo is %r’ % Options.options.foo)

easy to add options
values are stored in the context variable
Sebastian Jeltsch The WAF build system 31. August 2010 13 / 19

The WAF build system

WAF

Build Phase

Task System

def build(context):

commands: build, clean, install and uninstall call build()
⇒ isolate targets from actual code

Execution control: targets are evaluated lazily
Parallel: task scheduling

FS abstraction: e.g. distributed build
Language abstraction: flexibility and extensibility
Shell abstraction: platform independence

Sebastian Jeltsch The WAF build system 31. August 2010 14 / 19

The WAF build system

WAF

Build Phase

Task Abstraction Layer
abstraction layer between code execution (task) and declaration (task
generators):

Task:
abstract transformation unit
sequential constraints
require scheduler for parallel execution

Task generator:
factory tasks creation
Handle global constraints
(across tasks)

configuration set access
data sharing
OS abstraction

Sebastian Jeltsch The WAF build system 31. August 2010 15 / 19

The WAF build system

WAF

Build Phase

#!/usr/bin/env python
APPNAME=’example2a ’ # Task Generator
VERSION=’0.1337 ’

build_rule=’gcc ${SRC} -o ${TGT}’

import TaskGen
TaskGen.declare_chain(

rule = build_rule ,
ext_in = ’.c’,
ext_out = ’’,
reentrant = False)

def configure(context): pass

def build(context):
context(source=’t0.c’, target=’t0’, rule=build_rule)
context.new_task_gen(source=’t1.c’,

target=’t1’,rule=build_rule)
context(source=’t2.c’)

Sebastian Jeltsch The WAF build system 31. August 2010 16 / 19

The WAF build system

WAF

Build Phase

c/c++ support routines

#!/usr/bin/env python
APPNAME=’example2b ’ # Task Generator
VERSION=’0.1337 ’

def set_options(context):
context.tool_options(’compiler_cc ’)

def configure(context):
context.check_tool(’compiler_cc ’)

def build(context):
context(target=’t’, source=’t.c’, features=’cc cprogram ’)

Sebastian Jeltsch The WAF build system 31. August 2010 17 / 19

The WAF build system

WAF

task translation

example4: demo

#!/usr/bin/env python
APPNAME=’example4 ’ # shell usage & task translation
VERSION=’0.1337 ’

def configure(context): pass

def build(bld):
bld(rule=’cp ${SRC} ${TGT}’, source=’wscript ’,

target=’f1.txt’, shell=False)
bld(rule=’cp ${SRC} ${TGT}’, source=’wscript ’,

target=’f2.txt’, shell=True)

commands containing ’>’,’<’ or ’&’ can not be executed natively without shell
=> FALLBACK: shell usage
bld(rule=’cat ${SRC} > ${TGT}’, source=’wscript ’,

target=’f3.txt’, shell=False)

cmd: python waf distclean configure build --zones=runner ,action

Sebastian Jeltsch The WAF build system 31. August 2010 18 / 19

The WAF build system

WAF

interacting with the Filesystem through WAF

FS interaction

def build(context):
context.root # root (/) node
context.path # current (.) node

etc = context.root.find_dir(’/etc’)
fstab = context.root.find_resource(’/etc/fstab’)
context.root.ant_glob(’etc /**/g*’, dir=True ,

src=False , bld=False)

Ant Globs (http://ant.apache.org/manual/dirtasks.html)

Sebastian Jeltsch The WAF build system 31. August 2010 19 / 19

http://ant.apache.org/manual/dirtasks.html

	Introduction
	Autotools (GNU Build System)
	CMake

	WAF
	why WAF?
	wscript for this presentation
	basic structure
	Installing WAF
	Configuration Phase
	Configuration Options
	Build Phase
	task translation
	interacting with the Filesystem through WAF

