

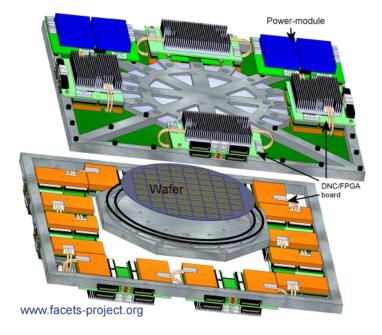
Fast Analog Computing with Emergent Transient States

The FACETS

Demonstrator

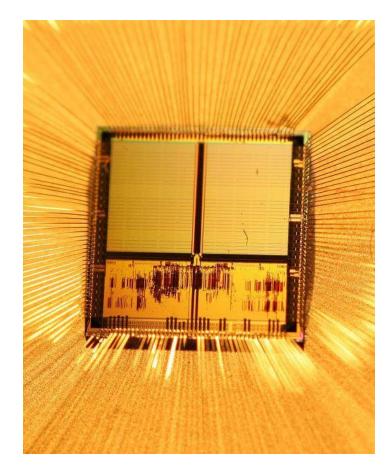
M. A. Petrovici University of Heidelberg

Code Jam 3 Freiburg, 09.10.2009

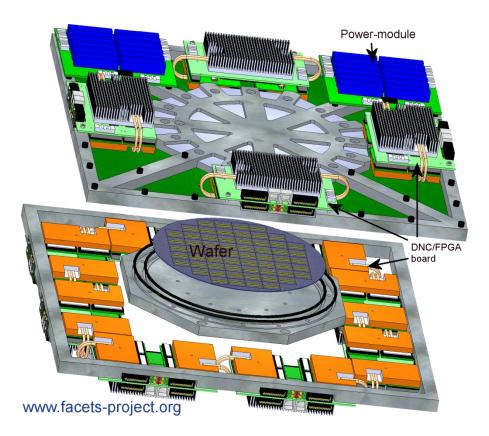


The FACETS Hardware

Stage 1: The Spikey Chip



Stage 2: Waferscale integration



384 neurons10⁵ synapses

 $16 \cdot 10^4$ neurons $4 \cdot 10^7$ synapses

The FACETS Demonstrator is...

... a collection of cortical neural network models emulated with the FACETS wafer-scale hardware *

* as long as not yet available: dedicated executable system specification

... exhibiting functionality that can be demonstrated

...written in PyNN

...computable with established software simulators (for verification, performance evaluation etc.)

Why bother ?

Reviewers & community are interested in:

Ability of the wafer-scale hardware system to serve as a flexible research tool in modeling neuroscience:

- despite hardware constraints, relevant experiments possible
- crucial interplay between hardware and software
- massive complexity of hardware configuration space can be handled by intelligent software
- operability by non-hardware experts

Ability of FACETS to fruitfully cooperate:

- Demonstrator is actively developed by UHEI, TUD, KTH, UNIC, ALUF, INCM
- hardware neuron and synapse models: result of discussions.
 FACETS has participated in their original development, e.g. EPFL.

Why not wait for the hardware ?

Testing and evaluation of all involved software layers

Virtual hardware allows to

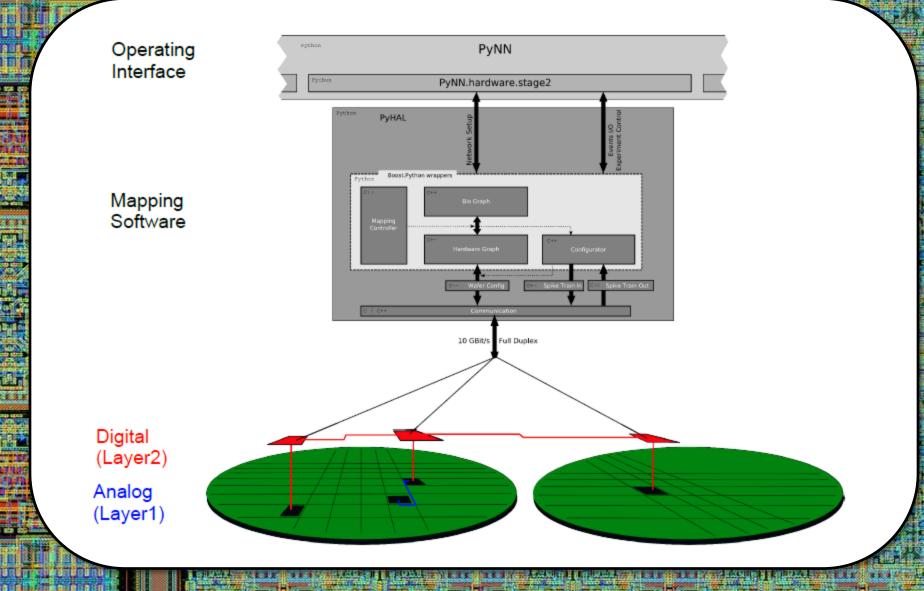
- test software before hardware is available
- test without possible hardware-specific problems
- provide a preliminary PyNN module for off-line testing of experiments

Verification of possible hardware changes

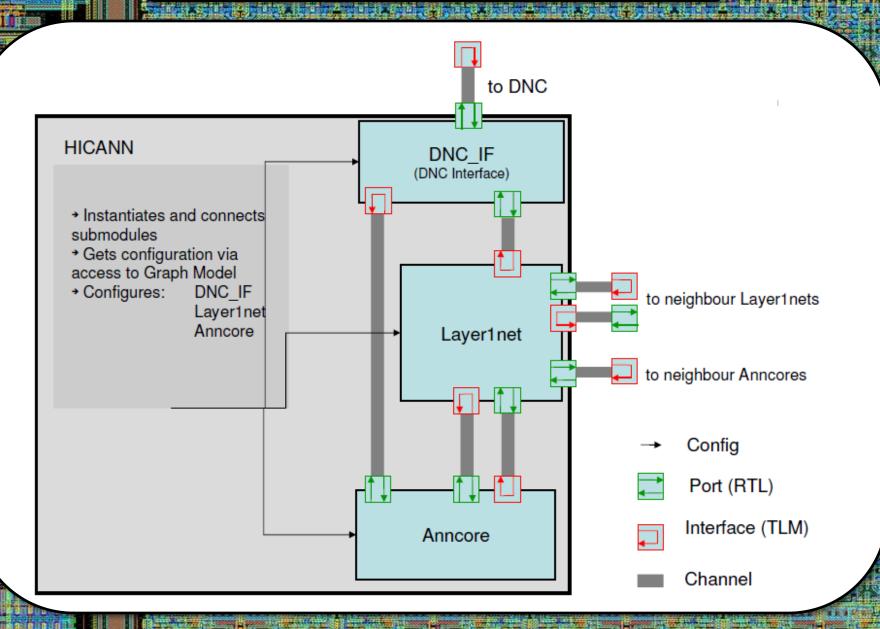
e.g. optionally insert detailed HICANN model

⇒ Important test-bench for preparation work

Simulating the emulator



Simulating the emulator



Experiments and demonstrations (to-do list...)

Evaluation of the involved software layers

- show full support of low-level and object-oriented PyNN API
- quantify performance of the mapping and routing algorithms
 - Execution time, memory consumption etc as function of network size, parameter heterogeneity, applied optimization strategies etc.
 - Neuron and synapse loss as function of ...
 - Histogram of layer1 hops as function of ...

Demonstrate correct functionality of the virtual hardware

• Unit tests

Experiments and demonstrations (to-do list...)

Model performance: Influence of hardware-specific imperfections or inhomogeneities

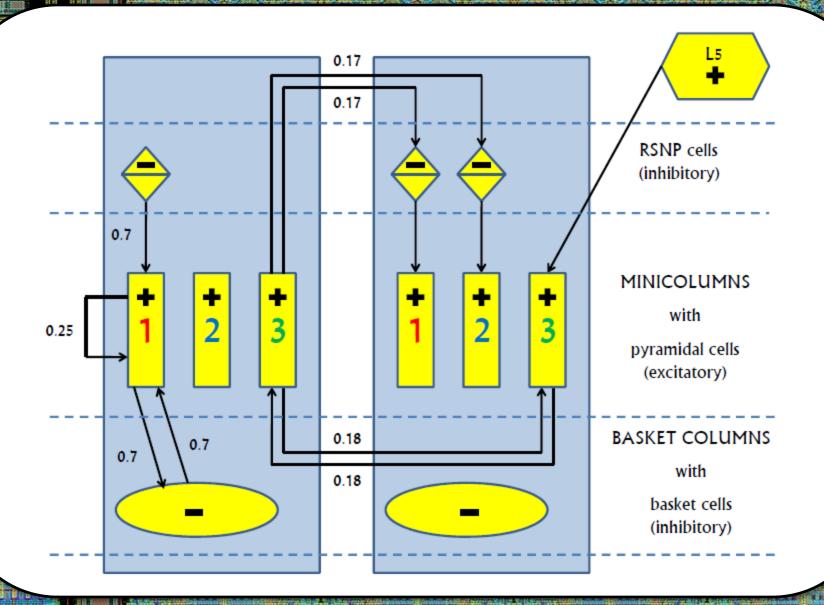
- neuron and synapse parameters (e.g. 4-bit weights, limited precision), signal transmission delays, ...
 - comparison software vs. (virtual) hardware
 - incorporate hardware-specific distortions into software model
- automatically extracted: "post-mapping" PyNN scripts that reflect mapping distortions

The Demonstrator models (so far)

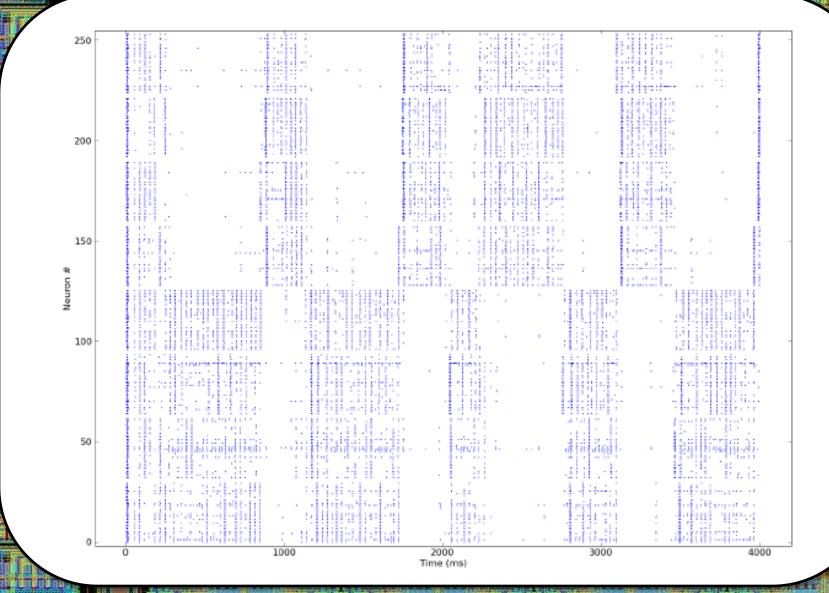
- A layer 2/3 attractor memory (by KTH, Krishnamurty / Lansner)
- A synfire chain model (by INCM and ALUF, Kremkow / Aertsen / Masson)
- A model of self-sustaining cortical AI states (by UNIC, Davison / Destexhe)
- Upcoming: Two-layer model by UNIC

All written in PyNN, all scalable, basic versions can be mapped to hardware without synapse loss

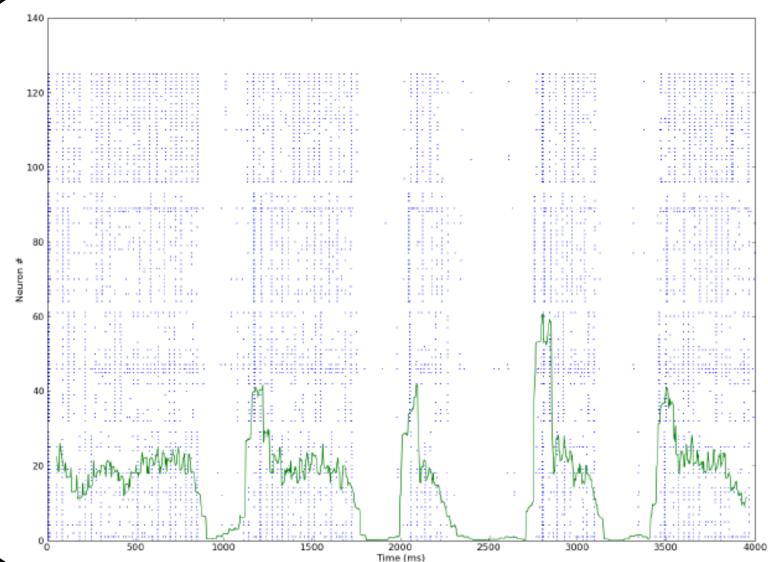
Attractor memory schematic



Attractor memory (NEST): 2 attractors

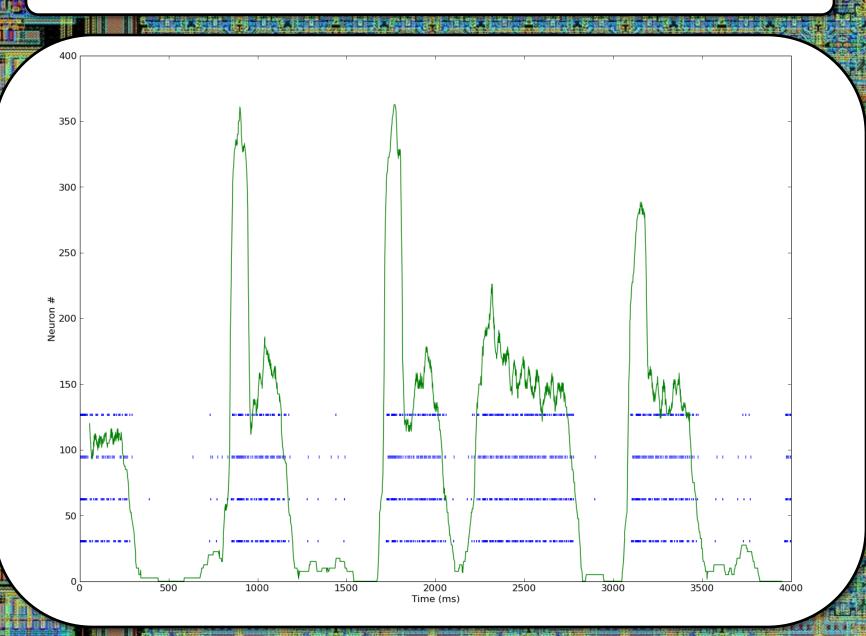


Attractor memory (NEST): pyramidal spike rate

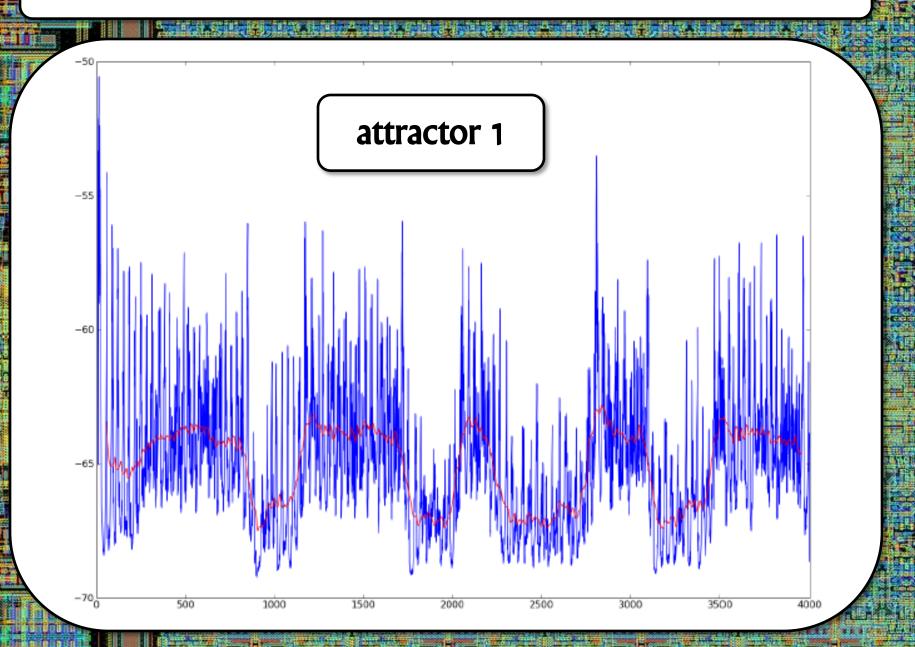


00

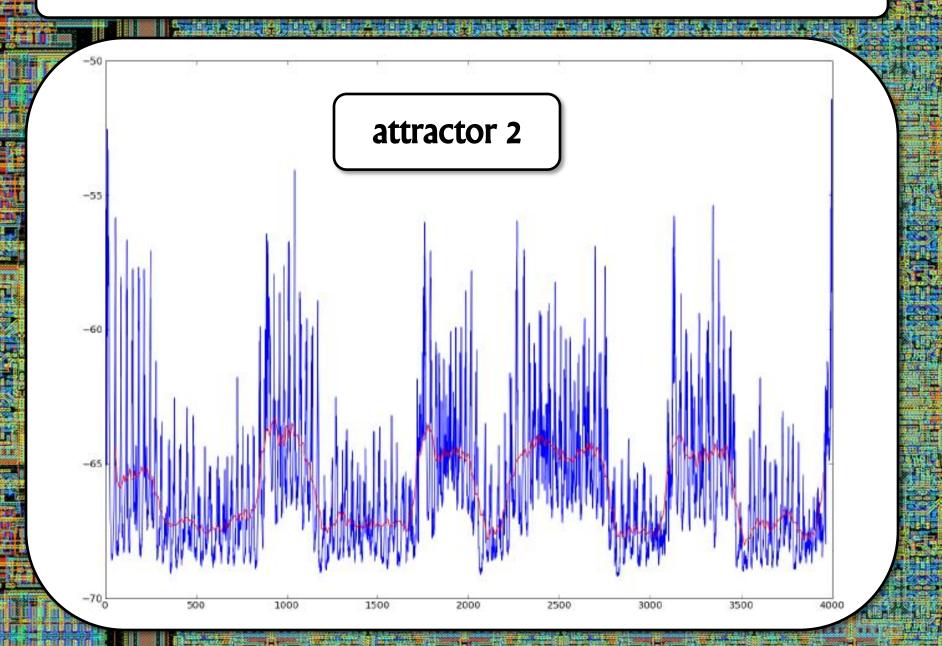
Attractor memory (NEST): RSNP spike rate



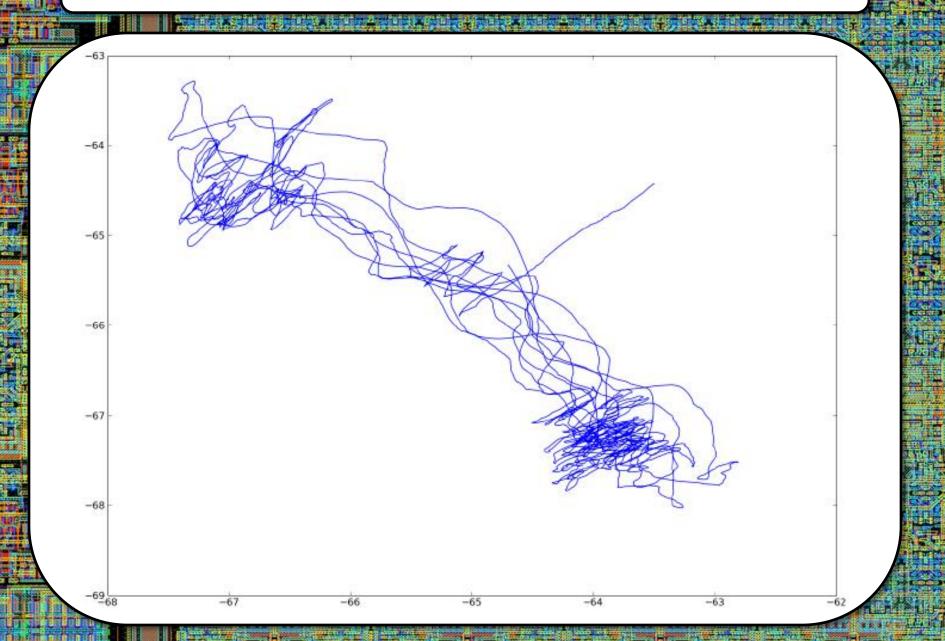
Attractor memory (NEST): average membrane potential



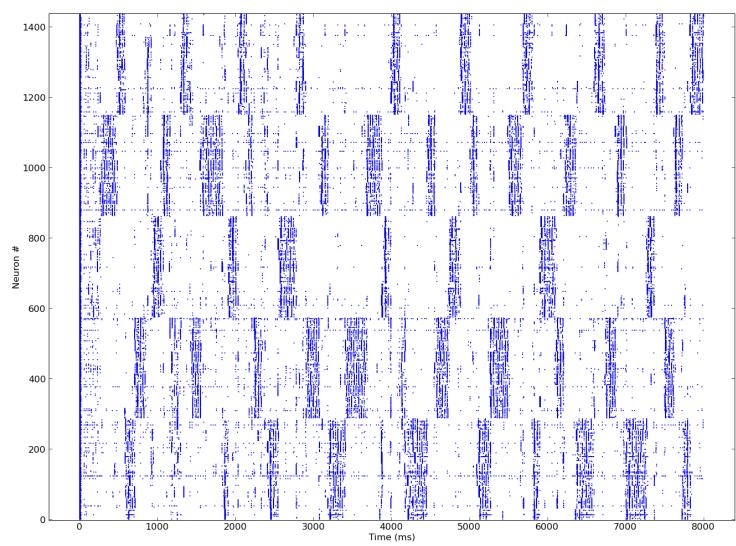
Attractor memory (NEST): average membrane potential



Attractor memory (NEST): phase diagram

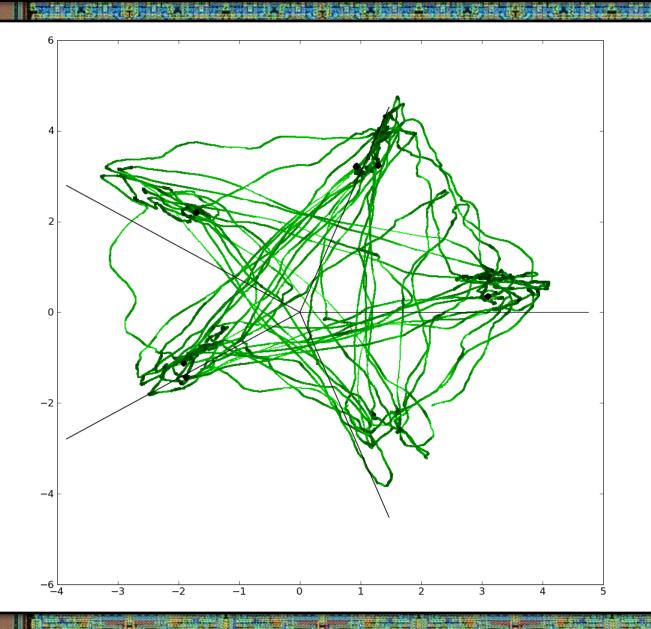


Attractor memory (NEST): 5 attractors

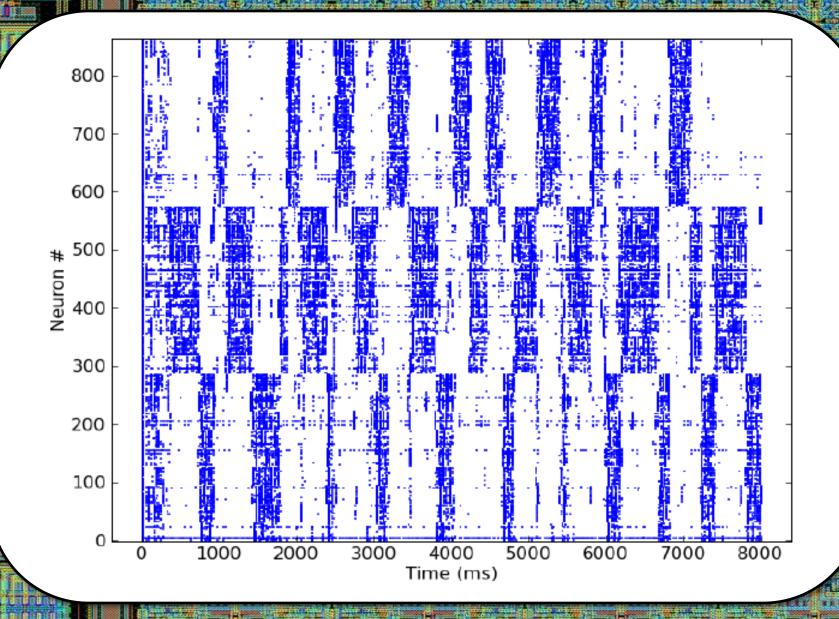


nun.

Attractor memory (NEST): "advanced" phase diagram



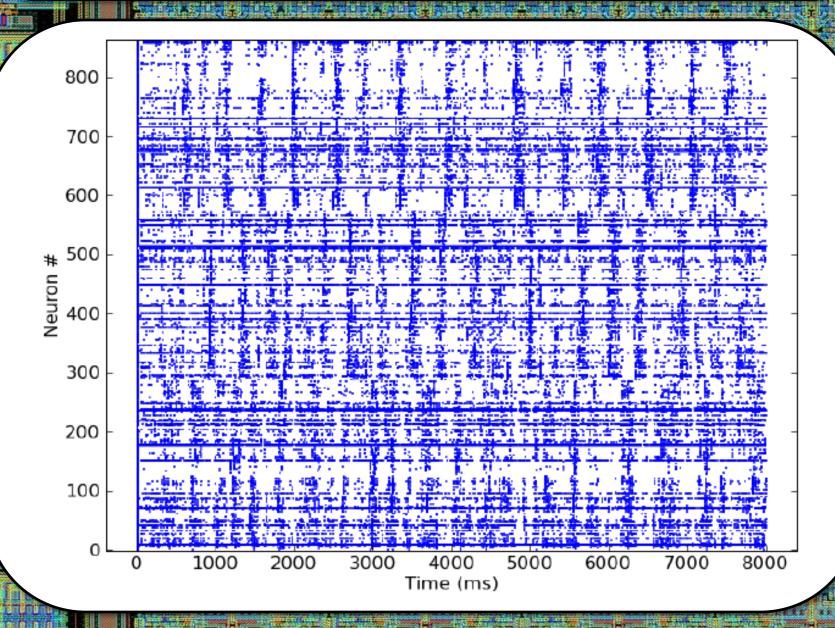
Attractor memory (NEST): 0% synaptic loss



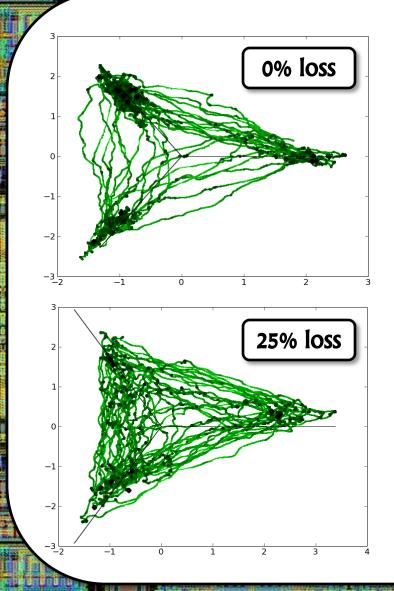
Attractor memory (NEST): 20% synaptic loss

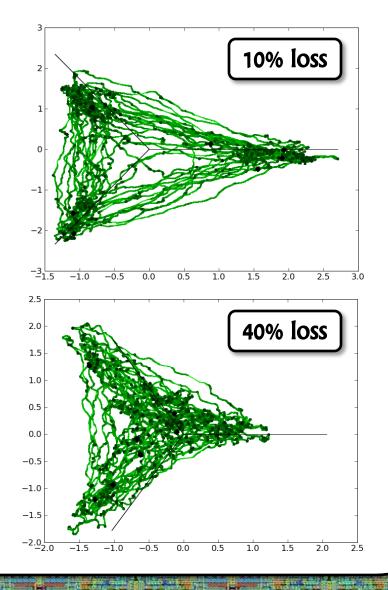
800		_
700	· · · · · · · · · · · · · · · · · · ·	-
600		-
<mark>⋕</mark> 500 ⊑		-
Neuron Neuron		-
300		
200		_
100		-
0	0 1000 2000 3000 4000 5000 6000 7000 800	0
	Time (ms)	-

Attractor memory (NEST): 40% synaptic loss

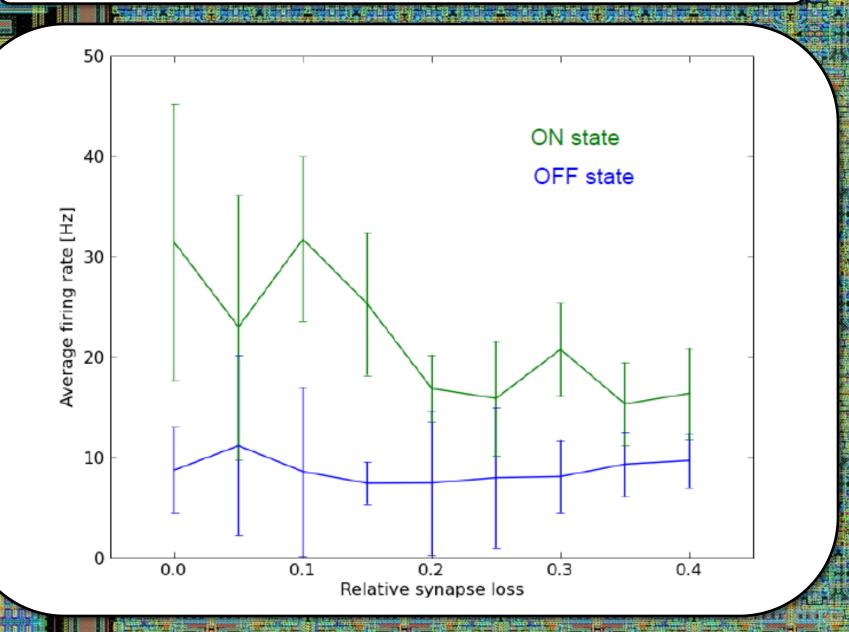


Attractor memory (NEST): phase diagrams

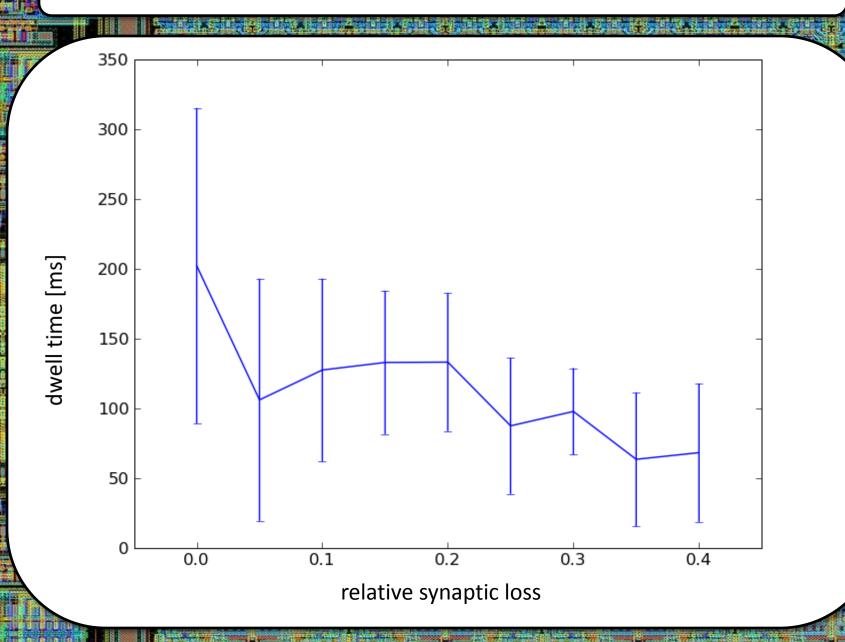




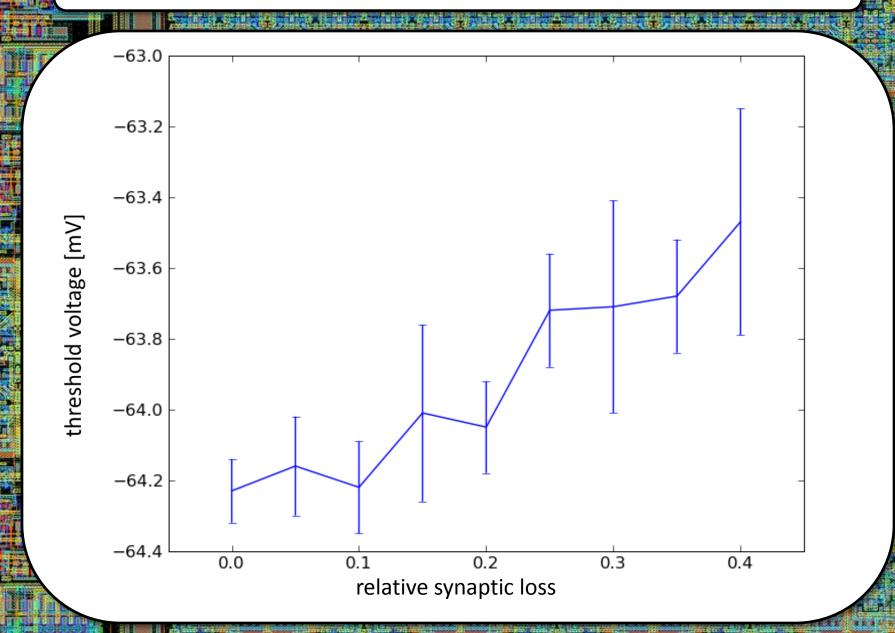
Attractor memory (NEST): firing rates



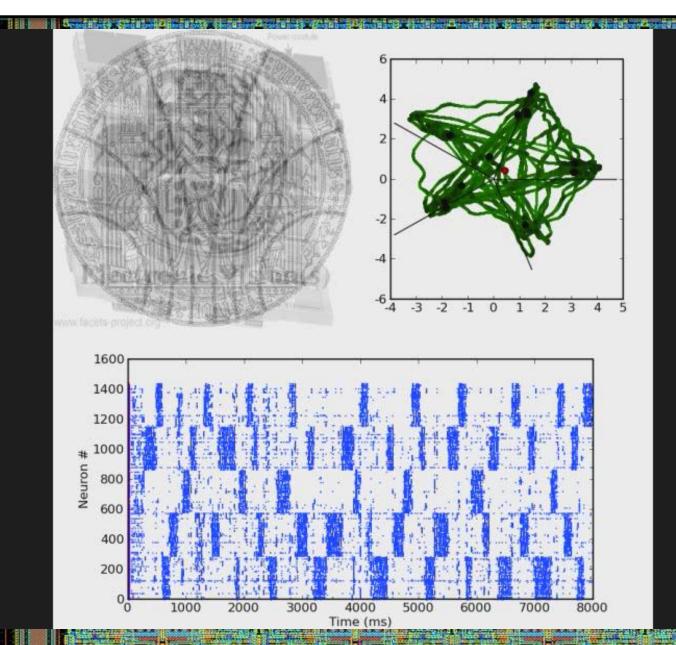
Attractor memory (NEST): attractor dwell times



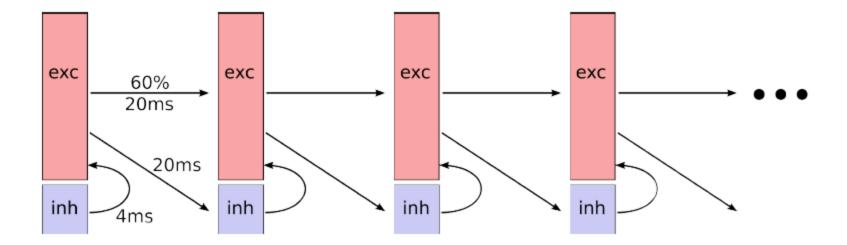
Attractor memory (NEST): threshold voltage



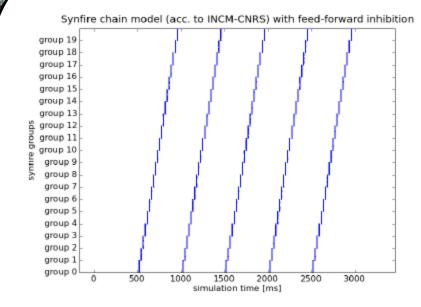
Attractor memory (NEST): pattern completion

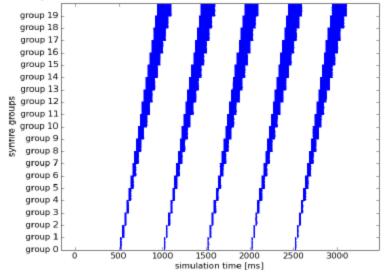


Synfire chain schematic



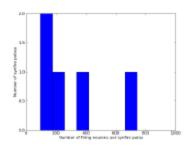
Synfire chain simulations (NEST)



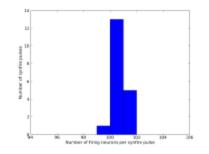


Synfire chain model (acc. to INCM-CNRS) without feed-forward inhibition

Without



With feed-forward inhibition



Technical infrastructure and visibility

- Wiki documentation (internal)
- Full code available in SVN repositories
- Experimental results in BSCW repository
- Tele-conferences
- Publications