"7 -
ronic Ia

Frfsﬁ?

‘_"’

b n()jebcﬁzfor smrg at on pro ects

B e et

- 95

>4
)

.
&2 -

i‘\\‘_

- A‘n’drew Dawson“““r ‘:\:
UNIC CNRS

odejJam #3
Oatobef 20()9

http //neuralensemble.org/trac/sumatra

.

i,

P

) -.

-
- .

o

. N .
.
Rumah Gadang Minangkabau in West Sumatra by CharlesFred http://www.flickr.com/pho l

This presentation is licenced under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 licence
http://creativecommons.org/licenses/by-nc-sa/3.0/

//:d1y ru

“l thought | used the same parameters
but I'm getting different results”

“l can’t remember which version of
the code | used to generate figure 6”

“The new student wants to reuse that
model | published three years ago but
he can’t reproduce the figures”

“It worked yesterday”

“Why did | do that?”

.(

An automated lab notebook to record
every detail of our simulations

What do we need to record?

the code that was run

how it was run (parameter files,
command-line options)

the platform on which it was run
why was it run?

what was the outcome?

recording the code that was run

store a copy of the executable

or of the source code

including that of any libraries used
as well as the compiler used

and the compilation procedure

recording the code that was run

the version of the interpreter
and any options used in compiling it
a copy of the simulation script

and of any external modules or packages
that are imported/included

recording the code that was run

maybe instead of storing a copy of the
code we can store the repository URL
and version number

recording the platform

processor architecture
operating system

number of processors

What should this automated lab
notebook look like?

different researchers, different workflows
command-line
GUI
batch jobs
solo or collaborative

any combination of these for different
components and phases of the project

lab notebook by benjaminlansky http://www.flickr.com/photos/7744331@N08/3110638201/

Requirements

Automate as much as possible, prompt the user for the rest

Interact with version control systems (Subversion, Git,
Mercurial, Bazaar)

support launching serial, distributed, batch simulations
link to data generated by the simulation
support all and any (command-line driven) simulation programs

support both local and networked storage of simulation
information

lab notebook by benjaminlansky http://www.flickr.com/photos/7744331@N08/3110638201/

Requirements

Be very easy to use, or only the very
conscientious will use it

’ M
N]
: | - |
"' S " ' ’y
- s i’f'
-

ofhing to do with Java

a Python package, sumatra, to enable
automated recording of provenance
information

can be used directly in your own code

or as the basis for interfaces

lab notebook by benjaminlansky http://www.flickr.com/photos/7744331@N08/3110638201/

Current
a command line interface, smt
a web interface, smtweb
Future

could be integrated into existing GUIs
(neuroConstruct, Topographica, nrngui)

or new desktop/web-based GUIs written from
scratch

lab notebook by benjaminlansky http://www.flickr.com/photos/7744331@N08/3110638201/

Dependencies

Python bindings for your preferred version
control system (pysvn, mercurial)

NeuroTools.parameters

Django (only needed for web interface)

lab notebook by benjaminlansky http://www.flickr.com/photos/7744331@N08/3110638201/

smt

S cd myproject
S smt init MyProject

S python main.py default.param
S smt run --simulator=python --main=main.py default.param

S smt list
default 20090930-174949
default 20090930-175111

S smt list -1

Label : default 20090930-174949

Reason -

Outcome -

Duration : 0.0548920631409

Script : MercurialRepository at /path/to/myproject

rf9ab74313efe (main file is main.py)
Executable : Python (version: 2.6.2) at /usr/bin/python
Timestamp : 2009-09-30 17:49:49.235772
Tags

S smt configure --simulator=python --main=main.py
$ smt run default.param

S smt info
Simulation project
Name

Default executable
Default script

Default launch mode
Data store
Record store

MyProject

Python (version: 2.6.2) at python
MercurialRepository at /path/to/myproject
rf9ab74313efe (main file 1s main.py)

serial

. /Data

Relational database record store using the
Django ORM (database file=.smt/sim records)

S smt run --label=haggling --reason="determine whether
the gourd i1s worth 3 or 4 shekels" romans.param

S smt comment "apparently, 1t is worth NaN shekels."

$ smt comment default 20090930-174949 "Eureka! Nobel
prize here we come."

S smt tag “Figure 6"

S smt run --reason="test effect of a smaller time
constant"” default.param tau m=10.0

S smt repeat haggling 2009101002
The simulation results match.

S smt
Usage: smt <subcommand> [options] [args]

Simulation management tool, version 0.1

Avallable subcommands:

init

configure

info

run

list

delete

comment

tag

repeat

$ smt comment --help
Usage: smt comment [options] [LABEL] [COMMENT]

This command is used to describe the outcome of the simulation. If LABEL is
omitted, the comment will be added to the most recent simulation. If the
'-f/--file' option is set, COMMENT should be the name of a file containing the
comment, otherwise it should be a string of text.

Options:
-h, --help show this help message and exit
-r, --replace 1if this flag is set, any existing comment will be

overwritten, otherwise, the new comment will be appended to
the end, starting on a new line
-f, —-file interpret COMMENT as the path to a file containing the

comment

Using sumatra within your own
scripts

import

import

parameter file = sys.argv[1l]
parameters = {}

execfile(parameter file, parameters)

numpy .random. seed(parameters| 1)
distr = getattr(numpy.random, parameters] 1)
data = distr(size=parameters| 1)

output file =
numpy.savetxt (output file, data)

import

from import load simulation project
from import Script
from import build parameters

project = load simulation project()
start time = time.time()
parameters = build parameters(parameter file)

script = Script(main file= file)
script.update code()

sim record = project.new record(parameters=parameters,
script=script,

label= ,
reason=

output file = % sim record.label

sim record.duration = time.time() - start time

sim record.data key = sim record.datastore.find new files(sim record.timestamp)

project.add record(sim record)

project.save()

odular, extensible structure

tions welcome

Coming soon

support for MPI-based and for batch simulations

improved recording of version information
(versions of all imported Python modules, etc.)

improved recording of platform information
support for more parameter file formats
improvements to the web interface

remote record storage (for collaborative projects,
etc.)

Coming later*

better integration of post-
simulation analysis

desktop GUI application

support for Git, Bazaar, etc.

*unless someone else would like to implement them sooner

