
Introduction Features Examples

Boost::Python

Bernhard Kaplan

Kirchhoff Institute for Physics, University of Heidelberg

1 / 9



Introduction Features Examples

What is boost?

a collection of peer-reviewed, open source libraries that extend
the functionality of C++

Boost::Python enables interoperability between C++ and
Python

Why would one have a C++ - Python Interface?

⇒ Use advantages from both languages:
Python’s flexibility and efficiency of C++

2 / 9



Introduction Features Examples

What is boost?

a collection of peer-reviewed, open source libraries that extend
the functionality of C++

Boost::Python enables interoperability between C++ and
Python

Why would one have a C++ - Python Interface?

⇒ Use advantages from both languages:
Python’s flexibility and efficiency of C++

2 / 9



Introduction Features Examples

What is boost?

a collection of peer-reviewed, open source libraries that extend
the functionality of C++

Boost::Python enables interoperability between C++ and
Python

Why would one have a C++ - Python Interface?

⇒ Use advantages from both languages:
Python’s flexibility and efficiency of C++

2 / 9



Introduction Features Examples

What is boost?

a collection of peer-reviewed, open source libraries that extend
the functionality of C++

Boost::Python enables interoperability between C++ and
Python

Why would one have a C++ - Python Interface?

⇒ Use advantages from both languages:
Python’s flexibility and efficiency of C++

2 / 9



Introduction Features Examples

What is boost?

a collection of peer-reviewed, open source libraries that extend
the functionality of C++

Boost::Python enables interoperability between C++ and
Python

Why would one have a C++ - Python Interface?

⇒ Use advantages from both languages:
Python’s flexibility and efficiency of C++

2 / 9



Introduction Features Examples

Why Boost::Python?

Comprehensive lifetime management facilities for low-level
C++ pointers and references (CallPolicies)

Support for C++ virtual functions that can be overridden in
Python

Wrapping of overloaded operators, STL container classes

Support for organizing extensions as Python packages, with a
central registry for inter-language type conversions

⇒ Expose C++ classes and functions to Python without an
additional wrapping language, simply use C++ compiler

3 / 9



Introduction Features Examples

Why Boost::Python?

Comprehensive lifetime management facilities for low-level
C++ pointers and references (CallPolicies)

Support for C++ virtual functions that can be overridden in
Python

Wrapping of overloaded operators, STL container classes

Support for organizing extensions as Python packages, with a
central registry for inter-language type conversions

⇒ Expose C++ classes and functions to Python without an
additional wrapping language, simply use C++ compiler

3 / 9



Introduction Features Examples

Why Boost::Python?

Comprehensive lifetime management facilities for low-level
C++ pointers and references (CallPolicies)

Support for C++ virtual functions that can be overridden in
Python

Wrapping of overloaded operators, STL container classes

Support for organizing extensions as Python packages, with a
central registry for inter-language type conversions

⇒ Expose C++ classes and functions to Python without an
additional wrapping language, simply use C++ compiler

3 / 9



Introduction Features Examples

Why Boost::Python?

Comprehensive lifetime management facilities for low-level
C++ pointers and references (CallPolicies)

Support for C++ virtual functions that can be overridden in
Python

Wrapping of overloaded operators, STL container classes

Support for organizing extensions as Python packages, with a
central registry for inter-language type conversions

⇒ Expose C++ classes and functions to Python without an
additional wrapping language, simply use C++ compiler

3 / 9



Introduction Features Examples

Why Boost::Python?

Comprehensive lifetime management facilities for low-level
C++ pointers and references (CallPolicies)

Support for C++ virtual functions that can be overridden in
Python

Wrapping of overloaded operators, STL container classes

Support for organizing extensions as Python packages, with a
central registry for inter-language type conversions

⇒ Expose C++ classes and functions to Python without an
additional wrapping language, simply use C++ compiler

3 / 9



Introduction Features Examples

Extending: example

#include <boost/python.hpp>

using namespace boost::python;

class A{ // simple example class

public:

A(int n) { value = n; }

void set(int n) { value = n; }

int get() { return value; }

private:

int value;

};

BOOST_PYTHON_MODULE(module_A){

// Create the Python type object for our extension class and

// define __init__ function.

class_<A>("A", init<int>())

.def("get", &A::get, "docstring here") //Add a regular member function

.add_property("value", &A::get, &A::set)

;

}

4 / 9



Introduction Features Examples

Extending: example

Compile the C++ file:

g++ -I/usr/include/boost -I/usr/include/python2.5

-l$(BOOSTLIBRARY) -fPIC -shared

-o module_A.so class_A.cpp

Use the module in python:

In [1]: import module_A as m

In [2]: a = m.A(123)

In [3]: a.get()

Out[3]: 123

In [4]: a.value = 321

In [5]: a.value

Out[5]: 321

5 / 9



Introduction Features Examples

Wrapping STL containers

#include <boost/python.hpp>

#include <boost/python/suite/indexing/vector_indexing_suite.hpp>

using namespace boost::python;

BOOST_PYTHON_MODULE(vector_wrapper){

using namespace boost::python;

//! python access to stl integer vectors

class_< std::vector<int> >("vectorInt")

.def(vector_indexing_suite<std::vector<int> >())

;

//! python access to stl vectors of integer vectors

class_< std::vector< std::vector<int> > >("vectorVectorInt")

.def(vector_indexing_suite<std::vector< std::vector<int> > >())

;}

In Python:

b = vector_wrapper.vectorInt()

b.append(123); b[0]; len(b)

6 / 9



Introduction Features Examples

Overloading

class X{

bool f(int a){return true;}

bool f(int a, double b){return true;}

int f(int a, int b, int c){return a+b+c;}

};

// write some "thin wrappers"

bool (X::*fx1)(int) = &X::f;

bool (X::*fx2)(int, double) = &X::f;

int (X::*fx3)(int, int, int) = &X::f;

.def("f", fx1)

.def("f", fx2)

.def("f", fx3)

Wrapping of functions with default arguments works very similar.

7 / 9



Introduction Features Examples

Call Policies

X& f(Y& y, Z* z){

y.z = z;

return y.x;

}

>>> x = f(y, z) # x refers to some C++ class X

>>> del y # x becomes a dangling ref.

>>> x.some_method() # BOOM!

.def("f", f,

return_internal_reference<1,

with_custodian_and_ward<1, 2> >());

// 1) Ties lifetime of one argument to that of result

// 2) Lifetime of the argument the 2nd argument(Z* z, ward)

// is dependent on the lifetime of the 1st argument custodian

8 / 9



Introduction Features Examples

Call Policies

X& f(Y& y, Z* z){

y.z = z;

return y.x;

}

>>> x = f(y, z) # x refers to some C++ class X

>>> del y # x becomes a dangling ref.

>>> x.some_method() # BOOM!

.def("f", f,

return_internal_reference<1,

with_custodian_and_ward<1, 2> >());

// 1) Ties lifetime of one argument to that of result

// 2) Lifetime of the argument the 2nd argument(Z* z, ward)

// is dependent on the lifetime of the 1st argument custodian

8 / 9



Introduction Features Examples

References

www.boost.org/doc/libs/1_35_0/libs/python/doc/index.
html

wiki.python.org/moin/boost.python

David Abrahams, Ralf W. Grosse-Kunstleve “Building Hybrid
Systems with Boost.Python”
www.boost-consulting.com/writing/bpl.html

9 / 9

www.boost.org/doc/libs/1_35_0/libs/python/doc/index.html
www.boost.org/doc/libs/1_35_0/libs/python/doc/index.html
wiki.python.org/moin/boost.python
www.boost-consulting.com/writing/bpl.html

	Introduction
	Features
	Examples

