
MUSIC
the Multi-Simulation Coordinator
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The purpose of MUSIC

I On-line pre- or post-processing of huge amounts of
data for a parallel simulator within the cluster

I Connect models developed for different
parallel simulators

I Promote re-usability through modularity
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Neuron

mpirun -np 4 nrniv my simulation.hoc
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2.6Tb/s 2.6Gb/sSimulator EEG
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LGN

NEST

Neuron

mpirun -np 3 -hostfile h1 my lgn model

mpirun -np 5 -hostfile h2 nrniv my simulation.hoc

mpirun -np 3 -hostfile h3 nest my simulation.sli
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Örjan Ekeberg and
Mikael Djurfeldt

Introduction

Users View

Programmers View

Implementers View

RFC

Introduction

LGN

NEST

Neuron



MUSIC
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Recommendation from the report of the 1st INCF Workshop
on Large-scale Modeling of the Nervous System:

“ Implement an experimental framework for

connecting software components. A feasibility study

should be performed regarding the possibility of on-line

communication between different software modules, for

example two parallel simulators. INCF should allocate

resources for implementing a software library with a

communication interface.”

I MUSIC standard and software provided and supported
by the International Neuroinformatics Coordinating
Facility (INCF)

I Being developed by the CSC, KTH in a collaborative
partnership with the INCF

I Released publicly under the GPL license through the
INCF Software Center in early 2009
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Design Goals

I Portability
Based on C++ and MPI

I Simplicity
Minimal impact on existing simulators

I Independence
Encourage independent tool development

I Performance
High bandwidth, low latency through use of MPI

I Extensibility
Some classes in API can be subclassed
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Örjan Ekeberg and
Mikael Djurfeldt

Introduction

Users View

Programmers View

Implementers View

RFC

Users View of MUSIC

Appl. A

Appl. B

Appl. C

A multi-simulation where several parallel applications
exchange runtime data
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”Spikes”
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I MUSIC-adapted applications present Ports

I Ports have names

I User connects ports via a configuration file
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Typical configuration file my simulation.music:

s t o p t i m e=1 . 0
[ model ]

b i n a r y=n r n i v
a r g s=my s i m u l a t i o n . hoc
np=40

[EEG ]
b i n a r y=e e g s y n t h e s i z e r
a r g s=geometry . dat 50e−6 10
np=12
model . e n e u r o n s −> i n p u t [ 1600 ]

mpirun -np 52 music my simulation.music
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Execution goes through three phases

I Launch phase
Outside the control of the application

I Setup phase
Declaration and mapping of ports

I Runtime phase
Simulation and transfer of data



MUSIC
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Each application is responsible for:

1. Initializing MUSIC

2. Creating Ports

3. Mapping Ports

4. Initiating the Runtime Phase

5. Advancing Simulation Time
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Initializing MUSIC

i n t main ( i n t argc , char ∗ a r g v [ ] )
{

s e t u p = MUSIC : : s e t u p ( argc , a r g v ) ;
comm = setup−>communicator ( ) ;
. . .

}
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Programs announce willingness to
send or receive data via ports
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Creating and mapping a port

p = setup−>p u b l i s h c o n t o u t p u t ( ” out ” ) ;

a r r a y d a t a m ( s t a t e v a r s , MPI : : DOUBLE,
mybase , m y s i z e ) ;

p −> map (&m) ;
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Supported Data Types

I Continuous — Time varying values
Sender: Reading from user data structures
Receiver: Writing into user data structures

I Events — Spikes
Sender: User calls an insertion function
Receiver: MUSIC calls user-supplied handler

I Messages — Arbitrary strings of bytes
Sender: User calls an insertion function
Receiver: MUSIC calls user-supplied handler
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Initiating the runtime phase

. . .
r u n t i m e = new MUSIC : : r u n t i m e ( setup , 0 . 0 0 0 1 ) ;

whi le ( runt ime−>t ime ( ) < s t o p t i m e )
{

. . .
runt ime−>t i c k ( ) ;
. . .

}
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What goes on behind the scene?

I Spatial Aliasing
Data resides on different processors

I Temporal Aliasing
Different applications may use different time steps
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Spatial Aliasing

Sender Receiver
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Temporal Aliasing

Sender

MUSIC

MPI

Receiver

Simulated Time

s1 s2 s3 s4 s5

r1 r2
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Request For Comments

I MUSIC project page
http://www.incf.org/programs/modeling/music-multi-simulation-coordinator

I RFC


	Introduction
	Users View
	Programmers View
	Implementers View
	RFC

