
MUSIC
the Multi-Simulation Coordinator

Örjan Ekeberg and Mikael Djurfeldt
CSC, KTH

MUSIC

Örjan Ekeberg and
Mikael Djurfeldt

Introduction

Users View

Programmers View

Implementers View

RFC

Introduction

The purpose of MUSIC

I On-line pre- or post-processing of huge amounts of
data for a parallel simulator within the cluster

I Connect models developed for different
parallel simulators

I Promote re-usability through modularity

MUSIC

Örjan Ekeberg and
Mikael Djurfeldt

Introduction

Users View

Programmers View

Implementers View

RFC

Introduction

Neuron

mpirun -np 4 nrniv my simulation.hoc

MUSIC

Örjan Ekeberg and
Mikael Djurfeldt

Introduction

Users View

Programmers View

Implementers View

RFC

Introduction

2.6Tb/s 2.6Gb/sSimulator EEG

MUSIC

Örjan Ekeberg and
Mikael Djurfeldt

Introduction

Users View

Programmers View

Implementers View

RFC

Introduction

LGN

NEST

Neuron

mpirun -np 3 -hostfile h1 my lgn model

mpirun -np 5 -hostfile h2 nrniv my simulation.hoc

mpirun -np 3 -hostfile h3 nest my simulation.sli

MUSIC

Örjan Ekeberg and
Mikael Djurfeldt

Introduction

Users View

Programmers View

Implementers View

RFC

Introduction

LGN

NEST

Neuron

MUSIC

Örjan Ekeberg and
Mikael Djurfeldt

Introduction

Users View

Programmers View

Implementers View

RFC

Introduction
Recommendation from the report of the 1st INCF Workshop
on Large-scale Modeling of the Nervous System:

“ Implement an experimental framework for

connecting software components. A feasibility study

should be performed regarding the possibility of on-line

communication between different software modules, for

example two parallel simulators. INCF should allocate

resources for implementing a software library with a

communication interface.”

I MUSIC standard and software provided and supported
by the International Neuroinformatics Coordinating
Facility (INCF)

I Being developed by the CSC, KTH in a collaborative
partnership with the INCF

I Released publicly under the GPL license through the
INCF Software Center in early 2009

MUSIC

Örjan Ekeberg and
Mikael Djurfeldt

Introduction

Users View

Programmers View

Implementers View

RFC

Introduction

Design Goals

I Portability
Based on C++ and MPI

I Simplicity
Minimal impact on existing simulators

I Independence
Encourage independent tool development

I Performance
High bandwidth, low latency through use of MPI

I Extensibility
Some classes in API can be subclassed

MUSIC

Örjan Ekeberg and
Mikael Djurfeldt

Introduction

Users View

Programmers View

Implementers View

RFC

Users View of MUSIC

Appl. A

Appl. B

Appl. C

A multi-simulation where several parallel applications
exchange runtime data

MUSIC

Örjan Ekeberg and
Mikael Djurfeldt

Introduction

Users View

Programmers View

Implementers View

RFC

Users View of MUSIC

”Spikes”

”S
ti

m
u
lu

s”
I MUSIC-adapted applications present Ports

I Ports have names

I User connects ports via a configuration file

MUSIC

Örjan Ekeberg and
Mikael Djurfeldt

Introduction

Users View

Programmers View

Implementers View

RFC

Users View of MUSIC

Typical configuration file my simulation.music:

s t o p t i m e=1 . 0
[model]

b i n a r y=n r n i v
a r g s=my s i m u l a t i o n . hoc
np=40

[EEG]
b i n a r y=e e g s y n t h e s i z e r
a r g s=geometry . dat 50e−6 10
np=12
model . e n e u r o n s −> i n p u t [1600]

mpirun -np 52 music my simulation.music

MUSIC

Örjan Ekeberg and
Mikael Djurfeldt

Introduction

Users View

Programmers View

Implementers View

RFC

Programmers View of MUSIC

Execution goes through three phases

I Launch phase
Outside the control of the application

I Setup phase
Declaration and mapping of ports

I Runtime phase
Simulation and transfer of data

MUSIC

Örjan Ekeberg and
Mikael Djurfeldt

Introduction

Users View

Programmers View

Implementers View

RFC

Programmers View of MUSIC

Each application is responsible for:

1. Initializing MUSIC

2. Creating Ports

3. Mapping Ports

4. Initiating the Runtime Phase

5. Advancing Simulation Time

MUSIC

Örjan Ekeberg and
Mikael Djurfeldt

Introduction

Users View

Programmers View

Implementers View

RFC

Programmers View of MUSIC

Initializing MUSIC

i n t main (i n t argc , char ∗ a r g v [])
{

s e t u p = MUSIC : : s e t u p (argc , a r g v) ;
comm = setup−>communicator () ;
. . .

}

MUSIC

Örjan Ekeberg and
Mikael Djurfeldt

Introduction

Users View

Programmers View

Implementers View

RFC

Programmers View of MUSIC

Programs announce willingness to
send or receive data via ports

D
is

tr
ib

u
te

d
se

n
d
er

d
at

a

O
u
tp

u
t

P
or

t

D
istrib

u
ted

receiver
d
ata

In
p
u
t

P
ort

MUSIC

Örjan Ekeberg and
Mikael Djurfeldt

Introduction

Users View

Programmers View

Implementers View

RFC

Programmers View of MUSIC

Creating and mapping a port

p = setup−>p u b l i s h c o n t o u t p u t (” out ”) ;

a r r a y d a t a m (s t a t e v a r s , MPI : : DOUBLE,
mybase , m y s i z e) ;

p −> map (&m) ;

MUSIC

Örjan Ekeberg and
Mikael Djurfeldt

Introduction

Users View

Programmers View

Implementers View

RFC

Programmers View of MUSIC

Supported Data Types

I Continuous — Time varying values
Sender: Reading from user data structures
Receiver: Writing into user data structures

I Events — Spikes
Sender: User calls an insertion function
Receiver: MUSIC calls user-supplied handler

I Messages — Arbitrary strings of bytes
Sender: User calls an insertion function
Receiver: MUSIC calls user-supplied handler

MUSIC

Örjan Ekeberg and
Mikael Djurfeldt

Introduction

Users View

Programmers View

Implementers View

RFC

Programmers View of MUSIC

Initiating the runtime phase

. . .
r u n t i m e = new MUSIC : : r u n t i m e (setup , 0 . 0 0 0 1) ;

whi le (runt ime−>t ime () < s t o p t i m e)
{

. . .
runt ime−>t i c k () ;
. . .

}

MUSIC

Örjan Ekeberg and
Mikael Djurfeldt

Introduction

Users View

Programmers View

Implementers View

RFC

Implementers View of MUSIC

What goes on behind the scene?

I Spatial Aliasing
Data resides on different processors

I Temporal Aliasing
Different applications may use different time steps

MUSIC

Örjan Ekeberg and
Mikael Djurfeldt

Introduction

Users View

Programmers View

Implementers View

RFC

Implementers View of MUSIC

Spatial Aliasing

Sender Receiver

D
is

tr
ib

u
te

d
se

n
d
er

d
at

a

D
istrib

u
ted

receiver
d
ata

Width

MUSIC

Örjan Ekeberg and
Mikael Djurfeldt

Introduction

Users View

Programmers View

Implementers View

RFC

Implementers View of MUSIC

Temporal Aliasing

Sender

MUSIC

MPI

Receiver

Simulated Time

s1 s2 s3 s4 s5

r1 r2

MUSIC

Örjan Ekeberg and
Mikael Djurfeldt

Introduction

Users View

Programmers View

Implementers View

RFC

Implementers View of MUSIC

Temporal Aliasing

Sender

MUSIC

MPI

Receiver

Simulated Time

s1 s2

r1 r2 r3 r4 r5

MUSIC

Örjan Ekeberg and
Mikael Djurfeldt

Introduction

Users View

Programmers View

Implementers View

RFC

Request For Comments

I MUSIC project page
http://www.incf.org/programs/modeling/music-multi-simulation-coordinator

I RFC

	Introduction
	Users View
	Programmers View
	Implementers View
	RFC

