
Thoughts on simulation
project management

Andrew Davison
UNIC, CNRS

FACETS CodeJam #2
Gif sur Yvette, 5th-8th May 2008



Outline

1 Reproducible research, drowning in data and other problems

2 Solutions

3 The real problem: I’m lazy and my brain is too small

4 Sumatra

5 Sumatra++



Reproducible research

”I thought I used the same parameters but I’m getting
different results”

I can’t remember which version of the code I used to generate
figure 6

Ted Carnevale wants to put the code for that model I
published 3 years ago into ModelDB but he can’t reproduce
the figures

Why did I do that?



Drowning in data

$ tree bfstdp data | tail -1
33 directories, 7018 files

photo of lab notebook?

photo of big stack of printouts? laid out on floor?

physically take a file of printouts from my thesis in a honking
big binder



Outline

1 Reproducible research, drowning in data and other problems

2 Solutions

3 The real problem: I’m lazy and my brain is too small

4 Sumatra

5 Sumatra++



Solutions?

Stage 1

Version control by filename, parameter values in filenames

Lab notebook with printouts stuck in

Stage 2

Parameters, model-definition code, model control code in
separate files

Excel spreadsheet to record parameters used, reasons for
doing each simulation, summary of results of each simulations

Stage 3

Eureka! Version control (versioning of entire tree, not just
individual files)

Keep using spreadsheet, now record svn revision for each
simulation

But still...

A lot of manual work, easy to forget to check-in changes



Solutions?

Stage 1

Version control by filename, parameter values in filenames

Lab notebook with printouts stuck in

Stage 2

Parameters, model-definition code, model control code in
separate files

Excel spreadsheet to record parameters used, reasons for
doing each simulation, summary of results of each simulations

Stage 3

Eureka! Version control (versioning of entire tree, not just
individual files)

Keep using spreadsheet, now record svn revision for each
simulation

But still...

A lot of manual work, easy to forget to check-in changes



Solutions?

Stage 1

Version control by filename, parameter values in filenames

Lab notebook with printouts stuck in

Stage 2

Parameters, model-definition code, model control code in
separate files

Excel spreadsheet to record parameters used, reasons for
doing each simulation, summary of results of each simulations

Stage 3

Eureka! Version control (versioning of entire tree, not just
individual files)

Keep using spreadsheet, now record svn revision for each
simulation

But still...

A lot of manual work, easy to forget to check-in changes



Solutions?

Stage 1

Version control by filename, parameter values in filenames

Lab notebook with printouts stuck in

Stage 2

Parameters, model-definition code, model control code in
separate files

Excel spreadsheet to record parameters used, reasons for
doing each simulation, summary of results of each simulations

Stage 3

Eureka! Version control (versioning of entire tree, not just
individual files)

Keep using spreadsheet, now record svn revision for each
simulation

But still...

A lot of manual work, easy to forget to check-in changes



Existing tools

Project management tools in NEURON: RCS control of
simulation projects in a single directory using hoc commands
ivdialog, prjnrncmp, prjnrninit, prjnrnci, prjnrnco,
prjnrnpr

NeuroConstruct Simulation Browser



Outline

1 Reproducible research, drowning in data and other problems

2 Solutions

3 The real problem: I’m lazy and my brain is too small

4 Sumatra

5 Sumatra++



Automating record-keeping

Core functionality:

Make it easy to record code versions, parameter sets, datafiles.
Automate as much as possible, prompt me for the rest

Make it easy to review the history of the project

Make it very easy to repeat a previous simulation and check
the results haven’t changed

Make it easy to run distributed simulations

Make it easy to run batch simulations (e.g. repeat n times
with different random seeds, systematic stepping through n-D
parameter space)

Support any command-line driven simulator/arbitrary
executable



Automating record keeping

Desirable, but non-core functionality:

Help me manage output datafiles, easily preview file contents,
visualise as graphs, archive, compare between simulations

Analysis workflow management...

More difficult - interactive sessions, GUI sessions



Outline

1 Reproducible research, drowning in data and other problems

2 Solutions

3 The real problem: I’m lazy and my brain is too small

4 Sumatra

5 Sumatra++



Sumatra
a command-line tool for simulation management/record-keeping

Written in Python (big surprise)

Supports any simulator that allows simulations to be run from
the command-line, although offers extra support for NEURON
(e.g. finds the executables automatically, will ensure .mod
files are recompiled if the code has changed)

Requirements:
pysvn
sqlite
django

Still alpha software, but I use it and anyone is welcome to try
it (GSL licence?).



smt help

$ smt help
Usage: smt <subcommand> [options] [args]
Simulation management tool, version 0.1

Available subcommands:
run
batch
setup
info
list
comment
repeat
package
delete
runserver
debug



smt setup

smt setup [options] NAME REPOS MAINFILE

NAME is the project name.

REPOS is the URL of a Subversion repository with the path
of the project.

MAINFILE is the name of the simulator script that would be
supplied on the command line if running the
simulator normally, e.g. init.hoc.

Options:
-d [--datapath] PATH : set the path to the directory in which

smt will search for datafiles generated
by the simulation. Defaults to ./Data

-s [--simpath] PATH : set the path to the simulator
executable. If this is not set, smt
will assume the simulator is NEURON,
and will search for the executables.



smt setup

$ smt setup Test1 https://svn.example.com/repos/myproject smttest.hoc
Creating table simulation_database_booleanparameter
Creating table simulation_database_simrecord
Creating table simulation_database_floatparameter
Creating table simulation_database_stringparameter
Creating table simulation_database_integerparameter
Creating table simulation_database_listparameter
Creating table simulation_database_tag
Creating table simulation_database_parametergroup
Installing index for simulation_database.BooleanParameter model
Installing index for simulation_database.FloatParameter model
Installing index for simulation_database.StringParameter model
Installing index for simulation_database.IntegerParameter model
Installing index for simulation_database.ListParameter model
Installing index for simulation_database.ParameterGroup model
Simulation project successfully set up



smt info

$ smt info
Name: Test1
Repository: https://svn.example.com/repos/myproject
Data root: Data
Main file: smttest.hoc
Simulator: /usr/local/nrn6.1/i686/bin/nrniv



smt run

$ smt run smttest1.param
Label: smttest1.param
Time stamp: 20080502-155932
Subversion: No version number provided. Using working copy (revision 136)
Writing simulation parameters to smttest1.param_20080502-155932.param
Command: i686/special smttest1.param_20080502-155932.param smttest.hoc
loading membrane mechanisms from /home/andrew/tmp/smt_test/i686/.libs/
libnrnmech.so
>>> Created cell
>>> Inserted mechanisms
>>> Inserted electrode
>>> Set parameters

1
>>> Running...

1
0

Archiving data to file /home/andrew/tmp/smt_test/
smttest1.param_20080502-155932.tar.gz
Data [] [’smttest1.param_20080502-155759.log’,
’smttest1.param_20080502-155911.log’, ’smttest1.param_20080502-155932.log’]
Deleting [’Data/smttest1.param_20080502-155932.log’]



smt run

$ smt run smttest1.param i_stim=100.0

$ smt run --label=Figure3 --reason=’Test for CodeJam’ smttest1.param

$ smt run smttest1.param
Label: smttest1.param
Time stamp: 20080502-161150
There are local changes to the simulation code.
Do you want to commit them (y/n)? [default=’y’]:
Please enter a log message: Fixed bug

$ smt run --version=136 smttest1.param
Label: smttest1.param
Time stamp: 20080502-161508
Subversion: Version requested is not the same as the working copy.

Checked out code version 136



smt comment

$ smt comment ’Wow! Nature here we come!’

$ smt comment Figure3_20080502-160909 ’Veni, vidi, vici’



smt list

$ smt list
smttest1.param_20080502-155932
smttest1.param_20080502-160650
Figure3_20080502-160909
smttest1.param_20080502-161150
smttest1.param_20080502-161508

$ smt list Figure3
Figure3_20080502-160909



smt list

$ smt list --mode=long Figure3
-----------------------------------------------------------------
Id : Figure3_20080502-160909
Reason : Test for CodeJam
Label : Figure3
Time_Taken : 0.0612869262695
Code_Version : 136
Sim_Version : {’date’: ’2007-11-24’, ’version’: ’6.1.1’,

’revision’: ’1894’}
Outcome : Veni, vidi, vici
Timestamp : 2008-05-02 16:09:09.795710



smt delete

$ smt delete smttest1.param_20080502-155932
1 record deleted



smt batch



smt runserver



Browser interface



Outline

1 Reproducible research, drowning in data and other problems

2 Solutions

3 The real problem: I’m lazy and my brain is too small

4 Sumatra

5 Sumatra++



Limitations of the current version

Subversion only

No GUI. Browser interface is read-only (would be nice to be
able to lauch simulations via web interface as well)

No support for multi-user, distributed projects

MPI support could be better

No support for post-simulation data analysis

Built with my own preferred workflow in mind - I have no idea
if other people work in the same or a similar way



Proposed redesign

A more modular, loosely-coupled structure...

...to give flexibility and support many different workflows

Support multiple interfaces (command-line, GUI, web)

Support different version control tools (Subversion, Bazaar,
...)

Plug-in based analysis workflow

Support multi-user, distributed projects


	Reproducible research, drowning in data and other problems
	Solutions
	The real problem: I'm lazy and my brain is too small
	Sumatra
	Sumatra++

