PyNN and the FACETS Hardware

Daniel Brüderle
Heidelberg
FACETS Hardware: Recap

„Neuromorphic“ Hardware: A physical model, not a simulation

• Intrinsically parallel, scalable, fast, ...

• Not an arbitrarily flexible substrate
 – fixed neuron model
 – limited ranges for neuron and synapse configuration parameters
 – limited resources
 • neuron number
 • connectivity / synapse number
 • max. firing rates
 • individual configurability
FACETS Hardware: Recap

- Three FACETS groups design and build neuromorphic hardware
 - **Bordeaux: High-precision systems**
 - mixed-signal VLSI HH model
 - real-time
 - $\sim 10^0 - 10^2$ neurons
 - **Heidelberg / Dresden: Large-scale accelerated system**
 - mixed-signal VLSI I&F model
 - highly accelerated (speedup factor $\sim 10^4 - 10^5$)
 - $\sim 10^2 - 10^6$ neurons
 - 2 stages of development...
Accelerated FACETS Hardware

- **Stage1 (chip-based):**
 - Conductance-based I&F neurons
 - 384 interconnectable neurons on each chip
 - Programmable connectivity
 - source, target, weight, tau_syn
 - Chips interconnectable
 - STDP (analog, on-chip)
 - Short term dep / fac
 - No spike-frequency adaptation
Accelerated FACETS Hardware

- Stage 2 (waferscale integration):
 Adaptive EIF a la Brette & Gerstner
 - \(\sim 10^5 \) dendritic building blocks and
 \(\sim 10^7 \) synapses per wafer
 - wafers interconnectable
 - STDP (digital, on-chip)
 - short term dep / fac
Status Hardware (May 2008)

• Stage 1: up and running

• Problems with analog parameter storage
 - temperature dependent leakage currents at synapses, also at voltage and current memory
 - hard to control e.g. STDP
 - hard to quantitatively compare results to e.g. NEST

• Only subset of neurons readable at the same time

• New, bug-fixed chip available since 1st of May
 - stable parameters
 - all neurons recordable at the same time
Status Hardware (May 2008)

- **Stage 2: final stage of development**
 - neuron and synapse model decided, prototype for parts of the model available (Stage 1 chip)
 - connectivity and routing issues decided, methods for network mapping existing, under further development and testing
 - new analog floating gate memory developed and successfully tested
 - wafer post-processing successfully tested
 - prototype for digital long-distance and off-wafer communication available
 - first full system expected during 2009
Why PyNN for the FACETS Hardware?

- Only little neuroscientific expertise in hardware groups
- Plan: Hardware as a useful research tool for modelers' community
 - statistics-intensive, large parameters sweeps, long-term learning, etc
 - interweaved hardware software co-simulation
- Needed: Access and usability for every FACETS member
Why PyNN for the FACETS Hardware?

- Python and PyNN provide
 - easy-to-learn, well documented user interface for non-hardware-specialists
 - experiment porting
 - quantitative result comparisons
 - e.g. for hardware model verification
 - analysis and post-processing tools
- Plans to adopt PyNN also for the Bordeaux hardware system and by e.g. Giacomo Indivery (DAISY)
Status *PyNN.hardware*

- Started with basic interface: Very hardware-specific C++ API
- At CodeJam #1: plain Python interface (boost), no connection to PyNN
- Now: PyNN supported as far as possible ("*pyNN.hardware.stage1"*)
 - procedural API
 - hardware well hidden – *seems* to behave like e.g. NEST, just faster ;)
 - reasonable default values for hardware parameters
 - voltage recording via oscilloscope + c++-sockets + boost.python
 - after Code Sprint in Debrecen: Populations / Projections
 - standard output formats
 - neuron model IF_facets_hardware1
 - warnings / errors for constraints
PyNN procedural and object-oriented API supported
own neuron model

PyHAL Hardware abstraction layer
Object-oriented, user friendly, full chip functionality

Python
Boost.Python
1:1 translation of all relevant classes

C++
Hardware specific
low-level API
config
input
output
Status *PyNN.hardware*

- **Drawbacks:**
 - no voltage recording of all neurons at the same time
 - limited parameter ranges (weights, voltages, time constants...), hardly handled so far
 - every run is different...
 - leakage
 - temperature
 - crosstalk
 - power supply
 - ...

- **Other issues:**
 - leakage
 - temperature
 - crosstalk
 - power supply
 - ...
Hardware Specific Implementations

• Temporal resolution („timestep“): Sampling rate oscilloscope

• Additional parameters
 - work station (chip) selection
 - translation factors
 • weights
 • temporal speedup
 - mapping parameters
 - calibration data (files for every workstation)

• Unused parameters
 - min_delay, max_delay
PyNN.hardwared in the Official Trunk?

- Plans as decided in Debrecen:
 Provide everyone with a lightweight dummy PyNN.hardwared module
 - full PyNN.hardwared module necessary only in Heidelberg
 - dummy module implements all errors and warnings that arise due to hardware specific constraints
 - for offline testing of scripts
 - run routine returns only „script executable“ or „script not executable“
Further Plans

- Include Graph Model (for mapping networks to the hardware configuration space, see lightning talk by Johannes Bill)
- Clean handling of limited parameter ranges
- Memory management for large numbers of experiments
 - Direct correspondence / mapping from high level data structures to allocated experiment objects in hardware playback memory
Hardware Model Verification

External input spikes

excitatory

inhibitory

Hardware output spikes (50 runs)

Hardware membrane potentials

Worst

Avg

Best

Simulated membrane potential (NEST)

presented at the IWANN 2007