
Romain Brette & Dan Goodman
Ecole Normale Supérieure
Projet Odyssée

http://brian.di.ens.fr

brette@di.ens.fr
goodman@di.ens.fr

mailto:brette@di.ens.fr
mailto:goodman@di.ens.fr

Brian: a pure Python simulator

What is Brian for?
• Quick model coding for every day use
• Easy to learn and intuitive
• Equations-oriented: flexible

What is Brian not for?
• Very large-scale network models

(distributed)
• Very detailed biophysical models

from brian import *

eqs = ”””
dv/dt = (ge+gi-(v+49*mV))/(20*ms) : volt
dge/dt = -ge/(5*ms) : volt
dgi/dt = -gi/(10*ms) : volt”””

P = NeuronGroup(4000,model=eqs,threshold=-50*mV,reset=-60*mV)
P.v=-60*mV
Pe = P.subgroup(3200)
Pi = P.subgroup(800)
Ce = Connection(Pe, P, 'ge')
Ci = Connection(Pi, P, 'gi')
Ce.connectRandom(Pe, P, 0.02, weight=1.62*mV)
Ci.connectRandom(Pi, P, 0.02, weight=-9*mV)

M = SpikeMonitor(P)
run(1*second)

rasterPlot(M)
show()

Brian in action

Pi Pe

Ce

Ci
P

eqs = ”””
dv/dt = (ge+gi-(v+49*mV))/(20*ms)
dge/dt = -ge/(5*ms)
dgi/dt = -gi/(10*ms)”””

P = NeuronGroup(4000,model=eqs,threshold=-50*mV,reset=-60*mV)

How it works
• Synchronous operations are implemented as vector operations
(Scipy)
• Cost of each vector-based operation = scales as N
• Cost of interpretation = constant = negligible for large networks
Neuron groups

State matrix SUpdate matrix A

v
ge
gi

How it works (2)
v

ge
gi

P.v = -60*mV

Pe = P.subgroup(3200)

Pi = P.subgroup(800)

Ce = Connection(Pe, P, 'ge')
Ci = Connection(Pi, P, 'gi')

How it works (3)
Ce.connectRandom(Pe, P, 0.02, weight=1.62*mV)
Ci.connectRandom(Pi, P, 0.02, weight=-9*mV)

for i in xrange(len(Pe)):
 k=random.binomial(m,p,1)[0]
 W.rows[i]=sample(xrange(m),k)
 W.data[i]=[value]*k

Vector-based construction:

Sparse matrix (0s not stored)
(scipy.sparse.lil_matrix)

i

How it works (4)
M = SpikeMonitor(P)
run(1*second)

Clock-based simulation

3.Update state matrix: S=dot(A,S)

5.Check threshold: spikes=(S[0,:]>vt).nonzero()[0]

7.Propagate spikes: S[1,:]+=W[spikes,:]

9.Reset: S[0,spikes]=vr

+ user-defined operations in between

*

(more complicated
 with sparse W)

M.spikes+=zip(spikes,repeat(t))

Planned features
• STDP (close to finished)
• Gap junctions
• Using the GPU (project with GPULib)
• Automatic code generation
• Static analysis of neural networks
• Distributed simulations?
• Event-driven algorithms?
• Compartmental modelling?

How you can help...
• Improve physical units package
• Job scheduling (e.g. with Condor)
• Plotting and analysis (integration with

NeuroTools?)
• User interfaces (e.g. HTML with CherryPy)
• PyNN interface
• Bug analyser (standardisation with PyLint?)
• Magic module (standardisation? Improvements?)
• Visualising networks (using graphviz?)
• Documentation tools (ReST+filters?)
• Or... get more deeply involved and contribute to

core Brian features (get in touch!)

Data structures: output
• StateMonitor

– M.times = qarray of length num steps with units of
time

– M[i] = qarray of length num steps with units of
recorded state variable for neuron i

• SpikeMonitor
– M.spikes = Python list of pairs (i, t) [also used as an

input data structure]
• PopulationRateMonitor

– M.times = qarray of length num bins, giving the left
edge of the interval, units of time

– M.rate = qarray of corresponding rates in Hz

Data structures: input
• Physical units

– Quantity (derived from float)
– qarray (derived from numpy.ndarray)

• Equations
– dV/dt = (-V + V0 + a*sin(b*t))/tau : volt [diff. equation]
– w = V*V : volt2 [equation]
– u = V [alias]
– V0 : volt [parameter]

• NeuronGroup of N neurons
– G.varname = qarray of length N with units of that state variable (defined

in Equations)
• SpikeGeneratorGroup

– spiketimes can be a list of pairs (i,t), or a function returning a list of
pairs, or a Python generator

• MultipleSpikeGeneratorGroup
– spiketimes is a list of sequences (t0, t1, t2, ...), one for each neuron

Units in Brian: classes

Units in Brian: functions
• Some new versions of numpy functions,

mostly just wrappers, e.g.
rand(n)=qarray(numpy.rand(n))

• Ufuncs: dimensionally consistent arithmetic
and many array functions implemented via
ufuncs mechanism by overriding the
behaviour of qarray.__array_wrap__

• qarray methods: other numpy functions such
as mean, std, var, etc. implemented as
methods

Units in Brian

Advantages
• Flexible system
• Written in pure Python so

will run on any platform
• Transparent: in many

cases, works as if you
were just using numpy
except with units

Disadvantages
• Slow, unusably so in the

case of arrays with non-
homogeneous units

• Doesn’t work
transparently with numpy
arrays, e.g.
array(...)*kg=array(...) not
qarray(...)

An alternative system for units

Ideas for alternative system
• Implement Dimension operations by relations like

dim(xy)=dim(x)+dim(y) and use numpy. Potentially
much faster.

• Implement code in C/C++ rather than pure Python.
• Mixed homogeneity of units more flexible but

difficult to code.
• Could fork units off as a separate project, maybe

even try for inclusion in numpy at some point.
• Possibly better to just have homogeneous units

and safeqarray – less ambitious, easier, but
similar to existing physical units packages.

