http://bria

o2 o
Romain Brette & Dan Goodman T

» i N
Ecole Normale Supérieure bre ECOLE NORMALE SUPERIEURE
Projet Odyssée geg Département d’Informatique

mailto:brette@di.ens.fr
mailto:goodman@di.ens.fr

Brian: a pure Python simulator

What 1s Bnian for?

* Quick model coding for every day use
* Easy to learn and intuitive

* Equations-oriented: flexible

What 1s Brian not for?

* Very large-scale network models
(distributed)

* Very detailed biophysical models

Brian In act

—(V = EL)+ ge + g

from brian import *

= —ge

eqs =

dv/dt = (ge+gi-(v+49*mV))/(20*ms) : volt
dge/dt = -ge/(5*ms) : volt
dgi/dt = -gi/ (10*ms) : volt”””

P = NeuronGroup (4000 ,model=eqgs, threshold=-50*mV, reset=-60*mV)
P.v=-60*mV

Pe = P.subgroup(3200)

Pi = P.subgroup (800)

Ce = Connection(Pe, P, 'ge'’)

Ci = Connection(Pi, P, 'gi')
Ce.connectRandom(Pe, P, 0.02, weight=1l.62*mV)
Ci.connectRandom(Pi, P, 0.02, weight=-9*mV)

M = SpikeMonitor (P)
run (1*second)

2500 [

rasterPlot (M)
show ()

2000

Neuron number

1500

1000

T e e X

Time (in ms)

How It w

* Synchronous operations are implemente
(Scipy)

* Cost of each vector-based operation = s
* Cost of interpretation = constant = negli

Neuron groups

eqs = mwrrrr

dv/dt = (ge+gi-(v+49*mV))/(20*ms)
dge/dt = -ge/ (5*ms)

dgi/dt = -gi/ (10*ms) """

P = NeuronGroup (4000 ,model=eqgs, threshold=-50*mV, reset=-60*mV)

/
Y \A

Update matrix A

ge

gi

Pe

Pi

Ce
Ci

-60*mV
P.subgroup (3200)
P.subgroup (800)

Connection (Pe, P,
Connection(Pi, P,

'ge'
'gi ')

How It w

Ce.connectRandom(Pe, P, 0.02, weight
Ci.connectRandom(Pi, P, 0.02, weight

Sparse matrix (Os not stored)
(scipy.sparse.li_matrix)

How It wor

M = SpikeMonitor (P)
run (l*second)

Clock-based simulation

3.Update state matrix: s=dot(a,s)

5.Check threshold: spikes=(S[O0,
/.Propagate spikes: S[1,:]+=W[s
9.Reset: S[0,spikes

user-defined operations in betwee

S M. spikes+=zip (spikes, repeat(t))

Planned features

STDP (close to finished)

Gap junctions

Using the GPU (project with GPULIDb)
Automatic code generation

Static analysis of neural networks
Distributed simulations?
Event-driven algorithms?
Compartmental modelling?

How you can help...

Improve physical units package
Job scheduling (e.g. with Condor)

Plotting and analysis (integration with
NeuroTools?)

User interfaces (e.g. HTML with CherryPy)

PyNN interface

Bug analyser (standardisation with PyLint?)
Magic module (standardisation? Improvements?)
Visualising networks (using graphviz?)
Documentation tools (ReST+filters?)

Or... get more deeply involved and contribute to
core Brian features (get in touch!)

Data structures: output

* StateMonitor
— M.times = qarray of length num steps with units of
time
— M[i] = qarray of length num steps with units of
recorded state variable for neuron |

* SpikeMonitor

— M.spikes = Python list of pairs (i, t) [also used as an
Input data structure]

* PopulationRateMonitor

— M.times = garray of length num bins, giving the left
edge of the interval, units of time

— M.rate = garray of corresponding rates in Hz

Data structures

Physical units
— Quantity (derived from float)
— qarray (derived from numpy.ndarray)
Equations
— dV/dt = (-V + VO + a*sin(b*t))/tau : volt [diff.
— w = V*V : volt2 [equation]
— u =V [alias]
— VO : volt [parameter]
NeuronGroup of N neurons
— G.varname = garray of length N with units o
in Equations)
SpikeGeneratorGroup

— spiketimes can be a list of pairs (i,t), or a fun
pairs, or a Python generator

MultipleSpikeGeneratorGroup
— spiketimes is a list of sequences (10, t1, t2, ..

Units in Bri

\
|
float numpy.ndarray
J
A |
D A
N\ 4 N
unitarray homog_unitarray Seliieh?
uantit : : has a unitarray or
uentiy e B | R ey
_ type=object & attribute
J _ V.
\
9
Unit safeqgarray

Units in Brian: functions

* Some new versions of numpy functions,
mostly just wrappers, €.g.
rand(n)=qgarray(numpy.rand(n))

* Ufuncs: dimensionally consistent arithmetic
and many array functions implemented via
ufuncs mechanism by overriding the
behaviour of qarray. array wrap_

* qarray methods: other numpy functions such
as mean, std, var, etc. implemented as
methods

Units in Bri

Advantages
* Flexible system

* Written in pure Python so
will run on any platform

* Transparent: in many
cases, works as if you
were just using numpy
except with units

Disady

* Slow

case
hom

Doe
trans
arra
arra
garr

An alternative s

Quantity

Uses a Dimension
object

numpy.ndarray

garray

Unit

Dimension DimensionArray B e e
attribute
|
Non-homogeneous Mixed?
Homogeneous Array with one extra e.g. Each column or row safeqa rray

dimension with 7
elements

could be separately
homogeneous

|deas for alternative system

Implement Dimension operations by relations like
dim(xy)=dim(x)+dim(y) and use numpy. Potentially
much faster.

Implement code in C/C++ rather than pure Python.

Mixed homogeneity of units more flexible but
difficult to code.

Could fork units off as a separate project, maybe
even try for inclusion in numpy at some point.

Possibly better to just have homogeneous units
and safeqarray — less ambitious, easier, but
similar to existing physical units packages.

