Source code for pyNN.neuron.projections

# encoding: utf-8
"""
nrnpython implementation of the PyNN API.

:copyright: Copyright 2006-2016 by the PyNN team, see AUTHORS.
:license: CeCILL, see LICENSE for details.

"""
from copy import deepcopy
import numpy
import logging
try:
    from itertools import izip
except ImportError:
    izip = zip  # Python 3 zip returns an iterator already
from itertools import repeat, chain
from collections import defaultdict
from pyNN import common, errors, core
from pyNN.random import RandomDistribution, NativeRNG
from pyNN.space import Space
from . import simulator
from .standardmodels.synapses import StaticSynapse, TsodyksMarkramSynapse

logger = logging.getLogger("PyNN")

_projections = []  # if a Projection is created but not assigned to a variable,
                   # the connections will not exist, so we store a reference here


[docs]class Projection(common.Projection): __doc__ = common.Projection.__doc__ _simulator = simulator _static_synapse_class = StaticSynapse def __init__(self, presynaptic_population, postsynaptic_population, connector, synapse_type=None, source=None, receptor_type=None, space=Space(), label=None): __doc__ = common.Projection.__init__.__doc__ common.Projection.__init__(self, presynaptic_population, postsynaptic_population, connector, synapse_type, source, receptor_type, space, label) self._connections = dict((index, defaultdict(list)) for index in self.post._mask_local.nonzero()[0]) connector.connect(self) self._presynaptic_components = dict((index, {}) for index in self.pre._mask_local.nonzero()[0]) if self.synapse_type.presynaptic_type: self._configure_presynaptic_components() _projections.append(self) logger.info("--- Projection[%s].__init__() ---" % self.label) @property def connections(self): for x in self._connections.values(): for y in x.values(): for z in y: yield z
[docs] def __getitem__(self, i): __doc__ = common.Projection.__getitem__.__doc__ if isinstance(i, int): if i < len(self): return self.connections[i] else: raise IndexError("%d > %d" % (i, len(self) - 1)) elif isinstance(i, slice): if i.stop < len(self): return [self.connections[j] for j in range(*i.indices(i.stop))] else: raise IndexError("%d > %d" % (i.stop, len(self) - 1))
[docs] def __len__(self): """Return the number of connections on the local MPI node.""" return len(list(self.connections))
def _convergent_connect(self, presynaptic_indices, postsynaptic_index, **connection_parameters): """ Connect a neuron to one or more other neurons with a static connection. `presynaptic_cells` -- a 1D array of pre-synaptic cell IDs `postsynaptic_cell` -- the ID of the post-synaptic cell. `connection_parameters` -- each parameter should be either a 1D array of the same length as `sources`, or a single value. """ #logger.debug("Convergent connect. Weights=%s" % connection_parameters['weight']) postsynaptic_cell = self.post[postsynaptic_index] if not isinstance(postsynaptic_cell, int) or not (0 <= postsynaptic_cell <= simulator.state.gid_counter): errmsg = "Invalid post-synaptic cell: %s (gid_counter=%d)" % (postsynaptic_cell, simulator.state.gid_counter) raise errors.ConnectionError(errmsg) for name, value in connection_parameters.items(): if isinstance(value, (float, int)): connection_parameters[name] = repeat(value) assert postsynaptic_cell.local for pre_idx, values in core.ezip(presynaptic_indices, *connection_parameters.values()): parameters = dict(zip(connection_parameters.keys(), values)) #logger.debug("Connecting neuron #%s to neuron #%s with synapse type %s, receptor type %s, parameters %s", pre_idx, postsynaptic_index, self.synapse_type, self.receptor_type, parameters) self._connections[postsynaptic_index][pre_idx].append( self.synapse_type.connection_type(self, pre_idx, postsynaptic_index, **parameters)) def _configure_presynaptic_components(self): """ For gap junctions potentially other complex synapse types the presynaptic side of the connection also needs to be initiated. This is a little tricky with sources distributed on different nodes as the parameters need to be gathered to the node where the source is hosted before it can be set """ # Get the list of all connections on all nodes conn_list = numpy.array(self.get(self.synapse_type.get_parameter_names(), 'list', gather='all', with_address=True)) # Loop through each of the connections where the presynaptic index (first column) is on # the local node mask_local = numpy.array(numpy.in1d(numpy.squeeze(conn_list[:, 0]), numpy.nonzero(self.pre._mask_local)[0]), dtype=bool) for conn in conn_list[mask_local, :]: pre_idx = int(conn[0]) post_idx = int(conn[1]) params = dict(zip(self.synapse_type.get_parameter_names(), conn[2:])) self._presynaptic_components[pre_idx][post_idx] = \ self.synapse_type.presynaptic_type(self, pre_idx, post_idx, **params) def _set_attributes(self, parameter_space): # If synapse has pre-synaptic components evaluate the parameters for them if self.synapse_type.presynaptic_type: presyn_param_space = deepcopy(parameter_space) presyn_param_space.evaluate(mask=(slice(None), self.pre._mask_local)) for component, connection_parameters in zip(self._presynaptic_components.values(), presyn_param_space.columns()): for name, value in connection_parameters.items(): for index in component: setattr(component[index], name, value[index]) # Evaluate the parameters for the post-synaptic components (typically the "Connection" object) parameter_space.evaluate(mask=(slice(None), self.post._mask_local)) # only columns for connections that exist on this machine for connection_group, connection_parameters in zip(self._connections.values(), parameter_space.columns()): for name, value in connection_parameters.items(): for index in connection_group: for connection in connection_group[index]: setattr(connection, name, value[index])