# encoding: utf-8
"""
lazyarray is a Python package that provides a lazily-evaluated numerical array
class, ``larray``, based on and compatible with NumPy arrays.
Copyright Andrew P. Davison and Joël Chavas 2012-2016
"""
from __future__ import division
import numpy
import operator
from copy import deepcopy
import collections
from functools import wraps
import logging
__version__ = "0.2.9"
# stuff for Python 3 compatibility
try:
long
except NameError:
long = int
try:
reduce
except NameError:
from functools import reduce
try:
basestring
except NameError:
basestring = str
logger = logging.getLogger("lazyarray")
def check_shape(meth):
"""
Decorator for larray magic methods, to ensure that the operand has
the same shape as the array.
"""
@wraps(meth)
def wrapped_meth(self, val):
if isinstance(val, (larray, numpy.ndarray)):
if val.shape != self._shape:
raise ValueError("shape mismatch: objects cannot be broadcast to a single shape")
return meth(self, val)
return wrapped_meth
def requires_shape(meth):
@wraps(meth)
def wrapped_meth(self, *args, **kwargs):
if self._shape is None:
raise ValueError("Shape of larray not specified")
return meth(self, *args, **kwargs)
return wrapped_meth
def full_address(addr, full_shape):
if not (isinstance(addr, numpy.ndarray) and addr.dtype == bool and addr.ndim == len(full_shape)):
if not isinstance(addr, tuple):
addr = (addr,)
if len(addr) < len(full_shape):
full_addr = [slice(None)] * len(full_shape)
for i, val in enumerate(addr):
full_addr[i] = val
addr = full_addr
return addr
def partial_shape(addr, full_shape):
"""
Calculate the size of the sub-array represented by `addr`
"""
def size(x, max):
if isinstance(x, (int, long, numpy.integer)):
return None
elif isinstance(x, slice):
y = min(max, x.stop or max) # slice limits can go past the bounds
return 1 + (y - (x.start or 0) - 1) // (x.step or 1)
elif isinstance(x, collections.Sized):
if hasattr(x, 'dtype') and x.dtype == bool:
return x.sum()
else:
return len(x)
else:
raise TypeError("Unsupported index type %s" % type(x))
addr = full_address(addr, full_shape)
if isinstance(addr, numpy.ndarray) and addr.dtype == bool:
return (addr.sum(),)
elif all(isinstance(x, collections.Sized) for x in addr):
return (len(addr[0]),)
else:
shape = [size(x, max) for (x, max) in zip(addr, full_shape)]
return tuple([x for x in shape if x is not None]) # remove empty dimensions
def reverse(func):
"""Given a function f(a, b), returns f(b, a)"""
@wraps(func)
def reversed_func(a, b):
return func(b, a)
reversed_func.__doc__ = "Reversed argument form of %s" % func.__doc__
reversed_func.__name__ = "reversed %s" % func.__name__
return reversed_func
# "The hash of a function object is hash(func_code) ^ id(func_globals)" ?
# see http://mail.python.org/pipermail/python-dev/2000-April/003397.html
def lazy_operation(name, reversed=False):
def op(self, val):
new_map = deepcopy(self)
f = getattr(operator, name)
if reversed:
f = reverse(f)
new_map.operations.append((f, val))
return new_map
return check_shape(op)
def lazy_inplace_operation(name):
def op(self, val):
self.operations.append((getattr(operator, name), val))
return self
return check_shape(op)
def lazy_unary_operation(name):
def op(self):
new_map = deepcopy(self)
new_map.operations.append((getattr(operator, name), None))
return new_map
return op
class larray(object):
"""
Optimises storage of and operations on arrays in various ways:
- stores only a single value if all the values in the array are the same;
- if the array is created from a function `f(i)` or `f(i,j)`, then
elements are only evaluated when they are accessed. Any operations
performed on the array are also queued up to be executed on access.
Two use cases for the latter are:
- to save memory for very large arrays by accessing them one row or
column at a time: the entire array need never be in memory.
- in parallelized code, different rows or columns may be evaluated
on different nodes or in different threads.
"""
def __init__(self, value, shape=None, dtype=None):
"""
Create a new lazy array.
`value` : may be an int, long, float, bool, NumPy array, iterator,
generator or a function, `f(i)` or `f(i,j)`, depending on the
dimensions of the array.
`f(i,j)` should return a single number when `i` and `j` are integers,
and a 1D array when either `i` or `j` or both is a NumPy array (in the
latter case the two arrays must have equal lengths).
"""
self.dtype = dtype
self.operations = []
if isinstance(value, basestring):
raise TypeError("An larray cannot be created from a string")
elif isinstance(value, larray):
if shape is not None and value.shape is not None:
assert shape == value.shape
self._shape = shape or value.shape
self.base_value = value.base_value
self.dtype = dtype or value.dtype
self.operations = value.operations # should deepcopy?
elif isinstance(value, collections.Sized): # False for numbers, generators, functions, iterators
if not isinstance(value, numpy.ndarray):
value = numpy.array(value, dtype=dtype)
elif dtype is not None:
assert value.dtype == dtype # or could convert value to the provided dtype
if shape and value.shape != shape:
raise ValueError("Array has shape %s, value has shape %s" % (shape, value.shape))
self._shape = value.shape
self.base_value = value
else:
assert numpy.isreal(value) # also True for callables, generators, iterators
self._shape = shape
if dtype is None:
self.base_value = value
else:
try:
self.base_value = dtype(value)
except TypeError:
self.base_value = value
def __eq__(self, other):
return self.base_value == other.base_value and self.operations == other.operations and self._shape == other.shape
def __deepcopy__(self, memo):
obj = type(self).__new__(type(self))
if isinstance(self.base_value, VectorizedIterable): # special case, but perhaps need to rethink
obj.base_value = self.base_value # whether deepcopy is appropriate everywhere
else:
try:
obj.base_value = deepcopy(self.base_value)
except TypeError: # base_value cannot be copied, e.g. is a generator (but see generator_tools from PyPI)
obj.base_value = self.base_value # so here we create a reference rather than deepcopying - could cause problems
obj._shape = self._shape
obj.dtype = self.dtype
obj.operations = []
for f, arg in self.operations:
if isinstance(f, numpy.ufunc):
obj.operations.append((f, deepcopy(arg)))
else:
obj.operations.append((deepcopy(f), deepcopy(arg)))
return obj
def __repr__(self):
return "<larray: base_value=%r shape=%r dtype=%r, operations=%r>" % (self.base_value,
self.shape,
self.dtype,
self.operations)
def _set_shape(self, value):
if (hasattr(self.base_value, "shape") and
self.base_value.shape and # values of type numpy.float have an empty shape
self.base_value.shape != value):
raise ValueError("Lazy array has fixed shape %s, cannot be changed to %s" % (self.base_value.shape, value))
self._shape = value
for op in self.operations:
if isinstance(op[1], larray):
op[1].shape = value
shape = property(fget=lambda self: self._shape,
fset=_set_shape, doc="Shape of the array")
@property
@requires_shape
def nrows(self):
"""Size of the first dimension of the array."""
return self._shape[0]
@property
@requires_shape
def ncols(self):
"""Size of the second dimension (if it exists) of the array."""
if len(self.shape) > 1:
return self._shape[1]
else:
return 1
@property
@requires_shape
def size(self):
"""Total number of elements in the array."""
return reduce(operator.mul, self._shape)
@property
def is_homogeneous(self):
"""True if all the elements of the array are the same."""
hom_base = isinstance(self.base_value, (int, long, numpy.integer, float, bool)) or type(self.base_value) == self.dtype
hom_ops = all(obj.is_homogeneous for f, obj in self.operations if isinstance(obj, larray))
return hom_base and hom_ops
def _partial_shape(self, addr):
"""
Calculate the size of the sub-array represented by `addr`
"""
return partial_shape(addr, self._shape)
def _homogeneous_array(self, addr):
self.check_bounds(addr)
shape = self._partial_shape(addr)
return numpy.ones(shape, type(self.base_value))
def _full_address(self, addr):
return full_address(addr, self._shape)
def _array_indices(self, addr):
self.check_bounds(addr)
def axis_indices(x, max):
if isinstance(x, (int, long, numpy.integer)):
return x
elif isinstance(x, slice): # need to handle negative values in slice
return numpy.arange((x.start or 0),
(x.stop or max),
(x.step or 1),
dtype=int)
elif isinstance(x, collections.Sized):
if hasattr(x, 'dtype') and x.dtype == bool:
return numpy.arange(max)[x]
else:
return numpy.array(x)
else:
raise TypeError("Unsupported index type %s" % type(x))
addr = self._full_address(addr)
if isinstance(addr, numpy.ndarray) and addr.dtype == bool:
if addr.ndim == 1:
return (numpy.arange(self._shape[0])[addr],)
else:
raise NotImplementedError()
elif all(isinstance(x, collections.Sized) for x in addr):
indices = [numpy.array(x) for x in addr]
return indices
else:
indices = [axis_indices(x, max) for (x, max) in zip(addr, self._shape)]
if len(indices) == 1:
return indices
elif len(indices) == 2:
if isinstance(indices[0], collections.Sized):
if isinstance(indices[1], collections.Sized):
mesh_xy = numpy.meshgrid(*indices)
return (mesh_xy[0].T, mesh_xy[1].T) # meshgrid works on (x,y), not (i,j)
return indices
else:
raise NotImplementedError("Only 1D and 2D arrays supported")
@requires_shape
def __getitem__(self, addr):
"""
Return one or more items from the array, as for NumPy arrays.
`addr` may be a single integer, a slice, a NumPy boolean array or a
NumPy integer array.
"""
return self._partially_evaluate(addr, simplify=False)
def _partially_evaluate(self, addr, simplify=False):
"""
Return part of the lazy array.
"""
if self.is_homogeneous:
if simplify:
base_val = self.base_value
else:
base_val = self._homogeneous_array(addr) * self.base_value
elif isinstance(self.base_value, (int, long, numpy.integer, float, bool)):
base_val = self._homogeneous_array(addr) * self.base_value
elif isinstance(self.base_value, numpy.ndarray):
base_val = self.base_value[addr]
elif callable(self.base_value):
indices = self._array_indices(addr)
base_val = self.base_value(*indices)
if isinstance(base_val, numpy.ndarray) and base_val.shape == (1,):
base_val = base_val[0]
elif isinstance(self.base_value, VectorizedIterable):
partial_shape = self._partial_shape(addr)
if partial_shape:
n = reduce(operator.mul, partial_shape)
else:
n = 1
base_val = self.base_value.next(n) # note that the array contents will depend on the order of access to elements
if n == 1:
base_val = base_val[0]
elif partial_shape and base_val.shape != partial_shape:
base_val = base_val.reshape(partial_shape)
elif isinstance(self.base_value, collections.Iterator):
raise NotImplementedError("coming soon...")
else:
raise ValueError("invalid base value for array (%s)" % self.base_value)
return self._apply_operations(base_val, addr, simplify=simplify)
@requires_shape
def check_bounds(self, addr):
"""
Check whether the given address is within the array bounds.
"""
def is_boolean_array(arr):
return hasattr(arr, 'dtype') and arr.dtype == bool
def check_axis(x, size):
if isinstance(x, (int, long, numpy.integer)):
lower = upper = x
elif isinstance(x, slice):
lower = x.start or 0
upper = min(x.stop or size - 1, size - 1) # slices are allowed to go past the bounds
elif isinstance(x, collections.Sized):
if is_boolean_array(x):
lower = 0
upper = x.size - 1
else:
if len(x) == 0:
raise ValueError("Empty address component (address was %s)" % str(addr))
if hasattr(x, "min"):
lower = x.min()
else:
lower = min(x)
if hasattr(x, "max"):
upper = x.max()
else:
upper = max(x)
else:
raise TypeError("Invalid array address: %s (element of type %s)" % (str(addr), type(x)))
if (lower < -size) or (upper >= size):
raise IndexError("Index out of bounds")
full_addr = self._full_address(addr)
if isinstance(addr, numpy.ndarray) and addr.dtype == bool:
if len(addr.shape) > len(self._shape):
raise IndexError("Too many indices for array")
for xmax, size in zip(addr.shape, self._shape):
upper = xmax - 1
if upper >= size:
raise IndexError("Index out of bounds")
else:
for i, size in zip(full_addr, self._shape):
check_axis(i, size)
def apply(self, f):
"""
Add the function `f(x)` to the list of the operations to be performed,
where `x` will be a scalar or a numpy array.
>>> m = larray(4, shape=(2,2))
>>> m.apply(numpy.sqrt)
>>> m.evaluate()
array([[ 2., 2.],
[ 2., 2.]])
"""
self.operations.append((f, None))
def _apply_operations(self, x, addr=None, simplify=False):
for f, arg in self.operations:
if arg is None:
x = f(x)
elif isinstance(arg, larray):
if addr is None:
x = f(x, arg.evaluate(simplify=simplify))
else:
x = f(x, arg._partially_evaluate(addr, simplify=simplify))
else:
x = f(x, arg)
return x
@requires_shape
def evaluate(self, simplify=False):
"""
Return the lazy array as a real NumPy array.
If the array is homogeneous and ``simplify`` is ``True``, return a
single numerical value.
"""
# need to catch the situation where a generator-based larray is evaluated a second time
if self.is_homogeneous:
if simplify:
x = self.base_value
else:
x = self.base_value * numpy.ones(self._shape, dtype=self.dtype)
elif isinstance(self.base_value, (int, long, numpy.integer, float, bool)):
x = self.base_value * numpy.ones(self._shape, dtype=self.dtype)
elif isinstance(self.base_value, numpy.ndarray):
x = self.base_value
elif callable(self.base_value):
x = numpy.array(numpy.fromfunction(self.base_value, shape=self._shape, dtype=int), dtype=self.dtype)
elif isinstance(self.base_value, VectorizedIterable):
x = self.base_value.next(self.size)
if x.shape != self._shape:
x = x.reshape(self._shape)
elif isinstance(self.base_value, collections.Iterator):
x = numpy.fromiter(self.base_value, dtype=self.dtype or float, count=self.size)
if x.shape != self._shape:
x = x.reshape(self._shape)
else:
raise ValueError("invalid base value for array")
return self._apply_operations(x, simplify=simplify)
def __call__(self, arg):
if callable(self.base_value):
if isinstance(arg, larray):
new_map = deepcopy(arg)
elif callable(arg):
new_map = larray(arg)
else:
raise Exception("Argument must be either callable or an larray.")
new_map.operations.append((self.base_value, None))
new_map.operations.extend(self.operations)
return new_map
else:
raise Exception("larray is not callable")
__iadd__ = lazy_inplace_operation('add')
__isub__ = lazy_inplace_operation('sub')
__imul__ = lazy_inplace_operation('mul')
__idiv__ = lazy_inplace_operation('div')
__ipow__ = lazy_inplace_operation('pow')
__add__ = lazy_operation('add')
__radd__ = __add__
__sub__ = lazy_operation('sub')
__rsub__ = lazy_operation('sub', reversed=True)
__mul__ = lazy_operation('mul')
__rmul__ = __mul__
__div__ = lazy_operation('div')
__rdiv__ = lazy_operation('div', reversed=True)
__truediv__ = lazy_operation('truediv')
__rtruediv__ = lazy_operation('truediv', reversed=True)
__pow__ = lazy_operation('pow')
__lt__ = lazy_operation('lt')
__gt__ = lazy_operation('gt')
__le__ = lazy_operation('le')
__ge__ = lazy_operation('ge')
__neg__ = lazy_unary_operation('neg')
__pos__ = lazy_unary_operation('pos')
__abs__ = lazy_unary_operation('abs')
def _build_ufunc(func):
"""Return a ufunc that works with lazy arrays"""
def larray_compatible_ufunc(x):
if isinstance(x, larray):
y = deepcopy(x)
y.apply(func)
return y
else:
return func(x)
return larray_compatible_ufunc
class VectorizedIterable(object):
"""
Base class for any class which has a method `next(n)`, i.e., where you
can choose how many values to return rather than just returning one at a
time.
"""
pass
# build lazy-array comptible versions of NumPy ufuncs
namespace = globals()
for name in dir(numpy):
obj = getattr(numpy, name)
if isinstance(obj, numpy.ufunc):
namespace[name] = _build_ufunc(obj)