{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# testing the orientation component\n", "\n", "On this page, we concerntrate on the orientation variable and test the effect of changing the average orientation as well as the bandwidth." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "np.set_printoptions(precision=3, suppress=True)\n", "import pylab\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Help on function envelope_orientation in module MotionClouds:\n", "\n", "envelope_orientation(fx, fy, ft, theta=0.0, B_theta=0.19634954084936207)\n", " Returns the orientation envelope:\n", " We use a von-Mises distribution on the orientation:\n", " - mean orientation is ``theta`` (in radians),\n", " - ``B_theta`` is the bandwidth (in radians). It is equal to the standard deviation of the Gaussian\n", " envelope which approximate the distribution for low bandwidths. The Half-Width at Half Height is\n", " given by approximately np.sqrt(2*B_theta_**2*np.log(2)).\n", " \n", " Run 'testing-grating.py' notebook to see the effect of changing theta and B_theta, see\n", " http://motionclouds.invibe.net/posts/testing-grating.html\n", "\n" ] } ], "source": [ "import MotionClouds as mc\n", "import os\n", "fx, fy, ft = mc.get_grids(mc.N_X, mc.N_Y, mc.N_frame)\n", "help(mc.envelope_orientation)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "name = 'grating'\n", "#initialize\n", "fx, fy, ft = mc.get_grids(mc.N_X, mc.N_Y, mc.N_frame)\n", "\n", "z = mc.envelope_gabor(fx, fy, ft)\n", "mc.figures(z, name, vext='.gif')\n", "mc.figures(z, name)\n", "mc.in_show_video(name)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# explore parameters\n", "for sigma_div in [1, 2, 3, 5, 8, 13 ]:\n", " name_ = name + '-largeband-B_theta-pi-over-' + str(sigma_div).replace('.', '_')\n", " z = mc.envelope_gabor(fx, fy, ft, B_theta=np.pi/sigma_div)\n", " mc.figures(z, name_)\n", " mc.in_show_video(name_)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for div in [1, 2, 4, 3, 5, 8, 13, 20, 30]:\n", " name_ = name + '-theta-pi-over-' + str(div).replace('.', '_')\n", " z = mc.envelope_gabor(fx, fy, ft, theta=np.pi/div)\n", " mc.figures(z, name_)\n", " mc.in_show_video(name_)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "V_X = 1.0\n", "for sigma_div in [1, 2, 3, 5, 8, 13 ]:\n", " name_ = name + '-B_theta-pi-over-' + str(sigma_div).replace('.', '_') + '-V_X-' + str(V_X).replace('.', '_')\n", " z = mc.envelope_gabor(fx, fy, ft, V_X=V_X, B_theta=np.pi/sigma_div)\n", " mc.figures(z, name_)\n", " mc.in_show_video(name_)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for B_sf in [0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.8]:\n", " name_ = name + '-B_sf-' + str(B_sf).replace('.', '_')\n", " z = mc.envelope_gabor(fx, fy, ft, B_sf=B_sf)\n", " mc.figures(z, name_)\n", " mc.in_show_video(name_)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## tuning the bandwidth\n", "\n", "In the ``MotionClouds`` script, we define the orientation envelope based on a VonMises distribution:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "def vonmises(th, theta, kappa, norm=True):\n", " if kappa==0:\n", " env = np.ones_like(th) \n", " elif kappa==np.inf:\n", " env = np.zeros_like(th)\n", " env[np.argmin(th < theta)] = 1.\n", " else:\n", " env = np.exp(kappa*(np.cos(2*(th-theta))-1))\n", " if norm:\n", " return env/env.sum()\n", " else:\n", " return env" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This definition handles also the extreme cases when the bandwidth is infinite (in which case we return a flat distribution) of null (so we get a dirac). Note also that the von Mises distribution is on a continuous variable (orientation), while we use a discrete fourier transform. In particular, some care should be taken for very narrow bandwidths." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvoAAAHgCAYAAADUusm1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABZf0lEQVR4nO39eZRkd33neb+/90ZkVpVqlUoy2kAChI2EWSSBsQEDZrEAg7DbbcP0Yve4zYzbnuked/cc9zKebs+Zpdvn9DxPP42xadqN7X7GGC9tyyD2TTY2ICEkDAKBEBi0gEpSbaolMyLub/64NyJuREZmRmZGVkVkvF/nREXcNX6ZURnxub/43t+NlBKSJEmSdpbsfDdAkiRJ0uQZ9CVJkqQdyKAvSZIk7UAGfUmSJGkHMuhLkiRJO5BBX5IkSdqBGufriQ8fPpyuuuqq8/X0kiRJ0sz77Gc/+2hK6eJRy85b0L/qqqu44447ztfTS5IkSTMvIv56tWWW7kiSJEk7kEFfkiRJ2oEM+pIkSdIOZNCXJEmSdiCDviRJkrQDGfQlSZKkHcigL0mSJO1ABn1JkiRpBzLoS5IkSTuQQV+SJEnagQz6kiRJ0g5k0JckSZJ2IIO+JEmStAMZ9CVJkqQdaN2gHxG/GRGPRMQXVlkeEfHvI+K+iPh8RFw/+WZKkiRJ2ohxevTfCdy0xvLXANdUt7cAb9t6syRJkiRtxbpBP6V0G/D4GqvcDPx2Kn0KOBgRl06qgZKk8+Db34a3vQ3e857z3RJJ0iZNokb/cuBbtekHqnmSpFl1661w113wJ38C3/rWuqtLkqbPOT0ZNyLeEhF3RMQdR44cOZdPLUnaiKNHodOBpeXysSRp5kwi6D8IXFmbvqKat0JK6e0ppRtTSjdefPHFE3hqSdK2aLWqBwna7fPaFEnS5kwi6N8C/N1q9J0XAsdTSg9PYL+SpPOlG/SLVAv9kqRZ0lhvhYj4XeBlwOGIeAD4X4EmQErp14FbgdcC9wGngb+3XY2VJJ0jrRakBBj0JWlWrRv0U0pvXmd5An5+Yi2SJJ1/3XIde/QlaWZ5ZVxJ0kr1cG+NviTNJIO+JGmldhsSZfmOPfqSNJMM+pKklVotIBn0JWmGGfQlSYOGw71BX5JmkkFfkjSo0+k/TgmWl89fWyRJm2bQlyQN6vbgpzQ4LUmaKQZ9SdKg7ig7KZUn5DrqjiTNJIO+JGlQr0e/mrZ0R5JmkkFfkjRooHTHUXckaVYZ9CVJg4aDvT36kjSTDPqSpEG9mnxr9CVplhn0JUmDBmr0Ld2RpFll0JckDaqPulOfliTNFIO+JGnQwMm4YY2+JM0og74kaVC9VCewR1+SZpRBX5I0yB59SdoRDPqSpEHDJ996Mq4kzSSDviRpkCfjStKOYNCXJA2qD6/ZrdHvhn5J0sww6EuSBtV78CNWzpMkzQSDviRpUK8mv+rFT140S5JmkUFfkjSo1aqV6kT52B59SZo5Bn1J0qDhcfQT9uhL0gwy6EuSBg2Hekt3JGkmGfQlSYNGlelYuiNJM8egL0kaNFCjD2CPviTNIoO+JGnQ8PCa1uhL0kwy6EuSBg336FujL0kzyaAvSRo06mRca/QlaeYY9CVJg0b13tujL0kzx6AvSRq0okbfHn1JmkUGfUnSoBWj7mCPviTNIIO+JGlQN9QnqivjejKuJM0ig74kaVC73Q/54PCakjSjDPqSpEEDoT5GzJMkzQKDviRpULtN2Y3f5cm4kjSLDPqSpL7VRthZXj73bZEkbYlBX5LU1w35jrojSTPPoC9J6lst0Bv0JWnmGPQlSX29oTXrw+5g0JekGWTQlyT1DY+h32WNviTNHIO+JKlvtRp9R92RpJlj0Jck9fVKdIaCvj36kjRzDPqSpL5RtfgpWaMvSTPIoC9J6uuV7gALC+XjCEt3JGkGGfQlSX31UXd27145X5I0Mwz6kqS+etDftas/3xp9SZo5Bn1JUl991J09e1bOlyTNDIO+JKmvXqKzWPXoezKuJM0kg74kqa8e6HdXQT8CWvboS9KsMehLkvpWPRnXGn1JmjUGfUlSX314zcVdZW8+QFGUN0nSzDDoS5L66lfGXWhCo1FNWqcvSbPGoC9J6quPrtNo9IP+8DJJ0tQz6EuS+lqtsvceoNGEZhMIe/QlaQYZ9CVJffUw32hAnkNQ1uzboy9JM8WgL0nqqwf9ZqPq0ccefUmaQQZ9SVJffXjNRu1kXAz6kjRrDPqSpL52uwz5EYM9+mDQl6QZY9CXJPUN1Og3IW+Uod8afUmaOQZ9SVJft0cfoJGXvfpgjb4kzSCDviSpb1SPPhj0JWkGGfQlSX0DQb/q0Y9qHH1LdyRpphj0JUl9wz36DU/GlaRZZdCXJPXVr4zbbPRr9LvLJEkzw6AvSeqrl+d0e/QDS3ckaQYZ9CVJfa1WOZQmlBfLauRANbymPfqSNFMM+pKkvnYbSNWVcRu1Gn1H3ZGkWWPQlyT1dcN8RHlV3Ea+cpkkaSYY9CVJpaIobwCRQZY56o4kzbCxgn5E3BQR90bEfRHxSyOWPzkiPhYRn4uIz0fEayffVEnStuoG+ZT6o+3UR91ZXj73bZIkbdq6QT8icuCtwGuAa4E3R8S1Q6v9S+DdKaXnAW8Cfm3SDZUkbbPuqDrd+nwY7NF31B1Jminj9Oi/ALgvpXR/SmkZeBdw89A6CdhfPT4APDS5JkqSzomBi2U1Bu9TskdfkmZMY/1VuBz4Vm36AeD7htb5V8AHI+J/AC4AXjmR1kmSzp1e6Q79gN8t3YmwRl+SZsykTsZ9M/DOlNIVwGuB34mIFfuOiLdExB0RcceRI0cm9NSSpImo1+h3S3Y8GVeSZtY4Qf9B4Mra9BXVvLqfAd4NkFL6S2AXcHh4Rymlt6eUbkwp3XjxxRdvrsWSpO3RC/KpHFoTBofXtHRHkmbKOEH/duCaiLg6IhYoT7a9ZWidbwKvAIiIZ1IGfbvsJWmW9E7GpRb0PRlXkmbVukE/pdQGfgH4APAlytF1vhgRvxIRb6hW+8fAz0bE3cDvAj+dUkqj9yhJmkqjTsZt1k7GtXRHkmbKOCfjklK6Fbh1aN4v1x7fA7xosk2TJJ1To4bXzGsn49qjL0kzxSvjSpJKXjBLknYUg74kqeSoO5K0oxj0JUmlepDvnozbNOhL0qwy6EuSSvUa/G7JTl4Nr5mSNfqSNGMM+pKk0kDpTrdGv+rR714Z1wHVJGlmGPQlSaVe0AeaC+XjLCtvUIb8ojgvTZMkbZxBX5JU6pXmpMHa/O5jx9KXpJli0JcklbqlOfXhNaGq0w+DviTNGIO+JKnUDfER/QtlwWDvvifkStLMMOhLkkqjRt2B8sTcoKzdt0dfkmaGQV+SVKqH+FE9+g6xKUkzxaAvSSrVh8+sl+t0x9LHGn1JmiUGfUlSadQ4+lCG/ghLdyRpxhj0JUmlbllOxGCPfjf0O+qOJM0Ug74kqVQv3WkMnYxbX0eSNBMM+pKkUv1E21FB35NxJWmmGPQlSaV6b/3IGn1LdyRplhj0JUml3pVxGQz69aE27dGXpJlh0JcklXpXxmXwgllNT8aVpFlk0JcklQZKd5qDj2PEOpKkqWbQlySV2u2ybAdG9Og7jr4kzRqDviSp1GrRS/r1Hv1ejb6j7kjSLDHoS5IGh85ccWXc2uPl5XPbLknSphn0JUnQ6fQvlpXn5XCaXbkXzJKkWWTQlyQN9uY3m4PLmgZ9SZpFBn1JUj/Ajwr69Xp9g74kzQyDviSpFvQpS3fqrNGXpJlk0Jck1UbTWaNHPznqjiTNEoO+JGmoR78xuKw7Ak+EpTuSNEMM+pKkWoAf1aNv6Y4kzSKDviRpsEe/uUqPfn09SdLUM+hLktYeXrMe9K3Rl6SZYdCXJA321DeGx9HvnoyLpTuSNEMM+pKkwR79xtDwmr2TcbFHX5JmiEFfkrT2BbOaXjBLkmaRQV+StHbpTr2H36AvSTPDoC9JWrtHv2GPviTNIoO+JGkwwK82vGb3yrgpnbt2SZI2zaAvSaqdjMvKHv2IMuxHDK4rSZpqBn1J0uCVcYdr9KFfp9/t1ZckTT2DviRpsCRnuHQHqvAf5TrW6UvSTDDoS5IGT8Yd2aPfKMfRTxj0JWlGGPQlSf3wHrHyglnQPyEXS3ckaVYY9CVJa4+jD/0TdO3Rl6SZYdCXJJXhfc0a/VqPvkFfkmaCQV+SNFiOk48I+s1mWdaTsHRHkmaEQV+S1O/RT2l0j35eG17THn1JmgkGfUlSv5c+Yu0afUt3JGlmGPQlSYPhffjKuFDr0cegL0kzwqAvSRoM7/mI4TV7NfoOrylJs8KgL0kaujLuKhfM6rJHX5JmgkFfklS7Mi5r9Ohjj74kzRCDviSpdmVcVqnRr3r0rdGXpJlh0JckVcNrVo8bo8bRb1AeBWDQl6QZYdCXJFXlOGvV6Du8piTNGoO+JM274br7UTX6jdq85eXtb5MkacsM+pI077ohP6WybCdi5Tr1i2jZoy9JM8GgL0nzrh7cR9XnQ1WjP2J9SdLUMuhL0rwb6NEfUZ8P/VF36utLkqaaQV+S5l19DP3mGD361uhL0kww6EvSvOsF/bR66Y41+pI0cwz6kjTvesF9jaBvj74kzRyDviTNu3rN/agx9MEafUmaQQZ9SZp39Rr9VXv0Ld2RpFlj0JekeVev0V+1Rz9fub4kaaoZ9CVp3tWH11wt6NujL0kzx6AvSfNunAtmdecnDPqSNCMM+pI078YZXrPbox8Y9CVpRhj0JWnejTPqTsNRdyRp1hj0JWneDfTojxH07dGXpJkwVtCPiJsi4t6IuC8ifmmVdX4iIu6JiC9GxP8z2WZKkrZNfXjNcUbd6XSgKLa9WZKkrVmlGLMvInLgrcCrgAeA2yPilpTSPbV1rgH+GfCilNLRiLhkuxosSZqw+pVxm6t8LESUBwHtdtnz327DwsI5a6IkaePG6dF/AXBfSun+lNIy8C7g5qF1fhZ4a0rpKEBK6ZHJNlOStG3GqdEHy3ckacaME/QvB75Vm36gmlf3DOAZEfHJiPhURNw0qQZKkrZZq1X20sPqNfpQBf0o1zXoS9LUW7d0ZwP7uQZ4GXAFcFtEfG9K6Vh9pYh4C/AWgCc/+ckTempJ0pbUe/RXG16zuywoa/kdeUeSpt44PfoPAlfWpq+o5tU9ANySUmqllL4OfIUy+A9IKb09pXRjSunGiy++eLNtliRNUr13frUafeiX9dijL0kzYZygfztwTURcHRELwJuAW4bW+WPK3nwi4jBlKc/9k2umJGnb1EN7vkbQ7428k+zRl6QZsG7QTym1gV8APgB8CXh3SumLEfErEfGGarUPAI9FxD3Ax4B/mlJ6bLsaLUmaoHqN/jg9+t1tJElTbawa/ZTSrcCtQ/N+ufY4Ab9Y3SRJs6Qe2tc8GbdZDrOZMOhL0gzwyriSNO+6Y+PDOj361TJr9CVpJhj0JWnejV2jXwv61uhL0tQz6EvSvBu4YJY9+pK0Uxj0JWnejV2j3yhr9Ie3kSRNJYO+JM27gSvjrnPBrC5LdyRp6hn0JWneDfTorxX0m9WVcS3dkaRZYNCXpHnXapVDZsLgWPnDmg3A4TUlaVYY9CVp3tXLcHpXvx2hV7/vqDuSNAsM+pI071otel36a/XoN2oHAfboS9LUM+hL0jwrivIGQEC2xsdCfUSe5eVtbZYkaesM+pI0z7o98ymVNfjd4TNHqZ+oa9CXpKln0JekedattU9p7TH0YfBiWtboS9LUM+hL0jyr19qvdVVc6B8IpGSPviTNAIO+JM2zXo8+a4+hD/0DgQh79CVpBhj0JWme1Wv01yvdqS931B1JmnoGfUmaZ73Antbv0a8Pr2npjiRNPYO+JM2zXo8+49fo17eTJE0tg74kzbN6YF+3dMcLZknSLDHoS9I8qw+vudZVcWHwQMCTcSVp6hn0JWmeDZyMO+aoO2CNviTNAIO+JM0ze/Qlaccy6EvSPNvQBbNqy63Rl6SpZ9CXpHk2cDKuQV+SdhKDviTNs3qN/nqlO02H15SkWWLQl6R51qvRZ/3hNbOsvEF5YFAU29o0SdLWGPQlaZ7Vr4y7Xo8+9NdJyV59SZpyBn1JmmetVhnaYf2TcQHy6qJZBn1JmnoGfUmaZ/VhMtcr3YGqRz/KxwZ9SZpqBn1JmmcbGV4Tyh79oKzpN+hL0lQz6EvSPKuH9XyMoF+v0feiWZI01Qz6kjTP2u1ajf4YpTu9sfSt0ZekaWfQl6R5Vh9Hv5Gvv36zCRFl6Y49+pI01Qz6kjTPukE/YryTcb06riTNDIO+JM2z+vCajTFq9LvrOLymJE09g74kzbN6+c1GavQN+pI09Qz6kjTP6mF93B79CIO+JM0Ag74kzbNuj35izKBf6/X3ZFxJmmoGfUmaZ90a/WC8C2Y1PRlXkmaFQV+S5tlGL5jVaFZXxvWCWZI07Qz6kjTPWq2ybAfGPBk3B6px9O3Rl6SpZtCXpHnWatFL+huq0fdkXEmadgZ9SZpXw+U34wT9Zm14zeXl7WmXJGkiDPqSNK+Kon+xrMggG+MjoVvHH2GNviRNOYO+JM2rbulNSuONuAOD69mjL0lTzaAvSfNqIOiPcSIuDI7MY42+JE01g74kzauNXiwLBg8IDPqSNNUM+pI0r+pBfdwe/UbtZFyDviRNNYO+JM2reunOOBfLgv4BQYRBX5KmnEFfkuZVb9ScDdToN6zRl6RZYdCXpHnV69Fn/Bp9g74kzQyDviTNq3rpjkFfknYcg74kzastnYyL4+hL0pQz6EvSvOoNr7mJC2YFXhlXkqacQV+S5tVA6c64PfqOoy9Js8KgL0nzqt4jP27pTr3n3x59SZpqBn1Jmlf1Hv1xS3fs0ZekmWHQl6R5VQ/qmx11J6XJtkmSNDEGfUmaV/Vx9Mct3YmAPO9PdzoTb5YkaTIM+pI0r3o9+gmaC+Nv1y3zScnyHUmaYgZ9SZpX7Xa/9KaRr71uXaMJRLmtJ+RK0tQy6EvSvNrM8JpQ1ukHZcmPPfqSNLUM+pI0r7q98RHjj7oDtRNyLd2RpGlm0JekeTUw6s4Ge/TBHn1JmnIGfUmaV/XhMTdUo1/r0bdGX5KmlkFfkubVZnv0m82y3McefUmaagZ9SZpX3VF3Uhr/gllQK92xR1+SpplBX5LmVbc3PmJjQb9+cS179CVpahn0JWle1UP6uFfGhf6Vcb1gliRNNYO+JM2retnNRnv0Iwz6kjTlDPqSNK/qo+5spke/uw9J0lQaK+hHxE0RcW9E3BcRv7TGen8jIlJE3Di5JkqStkXvyrgMhvf1NJvVlXE9GVeSptm6QT8icuCtwGuAa4E3R8S1I9bbB/xD4NOTbqQkaRv0rozLxnr0G56MK0mzYJwe/RcA96WU7k8pLQPvAm4esd7/Bvwb4OwE2ydJ2i6tVtmbDxu7YFazAVTj6NujL0lTa5ygfznwrdr0A9W8noi4HrgypfTeCbZNkrSdWi16SX8jF8zqrevJuJI0zbZ8Mm5EZMC/A/7xGOu+JSLuiIg7jhw5stWnliRt1nB9/YYumFXr/V9enlybJEkTNU7QfxC4sjZ9RTWvax/wLODjEfEN4IXALaNOyE0pvT2ldGNK6caLL754862WJG1NPeTneTlc5ri6PfopGfQlaYqNE/RvB66JiKsjYgF4E3BLd2FK6XhK6XBK6aqU0lXAp4A3pJTu2JYWS5K2rjfiTtrYibjQ79GPsHRHkqbYukE/pdQGfgH4APAl4N0ppS9GxK9ExBu2u4GSpG3Q7dFPaWNlOzBYz+/JuJI0tcZ6d08p3QrcOjTvl1dZ92Vbb5YkaVvVx9DfaNBv1ta3dEeSppZXxpWkeVTv0d9w6Y49+pI0Cwz6kjSP6rX1Gy7dqWr0PRlXkqaaQV+S5lEv6G+hRt+TcSVpqhn0JWke1Wv0N1q6U1/foC9JU8ugL0nzaCuj7uS1C2ZZoy9JU8ugL0nzqD6OfmMLPfrW6EvS1DLoS9I8qpfcNDdao1+tn7B0R5KmmEFfkubRlobXrIJ+YOmOJE0xg74kzaOBHv1NBv3h/UiSpopBX5Lm0aRq9A36kjS1DPqSNI96pTtsvEe/PupOp1MeLEiSpo5BX5Lm0cCVcfPV1xslon9wkJJ1+pI0pQz6kjSP6lfGbS5sfHvr9CVp6hn0JWketVr9kpuNDq8JVdCPch8GfUmaSgZ9SZpH9XKbjZ6MC2XQDxxLX5KmmEFfkubRwKg7G6zRh9pFs+zRl6RpZdCXpHnU7dGP2HyPPgCejCtJ08qgL0nzaKs1+o6lL0lTz6AvSfOoHs7zzZyM2yy/DUjYoy9JU8qgL0nzaMuj7lR1/dboS9LUMuhL0jwaOBl3MzX6tQtmGfQlaSoZ9CVpHg2cjLuZGv3aNpbuSNJUMuhL0jyq98JvJug3GlWNvj36kjStDPqSNI/a7VqN/laG18SgL0lTyqAvSfNoyz36zerKuPboS9K0MuhL0jxqtcqhMVPaZNDPAYfXlKRpZtCXpHnU7YXf9Mm43XIfe/QlaVoZ9CVpHrXblN3xbP5k3IF9SZKmjUFfkuZNUUCnU00E5PnG91Efe395eSLNkiRNlkFfkuZNtwe+W58fsfF91Hv0DfqSNJUM+pI0b+o19c1NlO3Ut3PUHUmaWgZ9SZo33WCe0mAJzkbkVdCPMOhL0pQy6EvSvOmV7rD1Hn0w6EvSlDLoS9K8qffo55sM+vVvAgz6kjSVDPqSNG96w2Gm2nj4G2SPviRNPYO+JM2bXo8+my/d6fboezKuJE0tg74kzZt6MN/MxbIAGtXY+56MK0lTy6AvSfNmEqPuWKMvSVPPoC9J86Ye9DdduuMFsyRp2hn0JWne1K+Mu9mTcetBv3dyryRpmhj0JWneTKJGv+nJuJI07Qz6kjRv6j3wW+3Rj4B2Z+ttkiRNnEFfkubNQI3+BEp3WtboS9I0MuhL0rypj6O/2VF3sqzszQcoivImSZoqBn1Jmje9mvot9OhHWKcvSVPOoC9J86Zeo9+98NVmdMt3UnLkHUmaQgZ9SZo3rVYZzmHzpTtQ9ehHf5+SpKli0JekeVMP5Zu9YBZAnpc5P2HQl6QpZNCXpHkzULqz1R59rNGXpCll0JekedMt3dnK8JpQ9ugDYNCXpGlk0JekedMN5RFbOxm316OPJ+NK0hQy6EvSvJlU6U6j0R9L3x59SZo6Bn1JmjcDo+5Mokff4TUlaRoZ9CVp3tR737faow+ejCtJU8qgL0nzphvKU9ra8Jrd0h2DviRNJYO+JM2bbplNxBZ79GvbGvQlaeoY9CVp3kyqRr++rUFfkqaOQV+S5s3ERt1pVlfG9WRcSZpGBn1JmjetVjn2PWztglnNBhDlvuzRl6SpY9CXpHnTagHVlXHzrZTudA8S7NGXpGlk0JekeVIfISdiaz369Rr95eWttUuSNHEGfUmaJ0XRPxE3Msi28DHgqDuSNNUM+pI0TyY1hj4Mbm+PviRNHYO+JM2Tbi19Sv0r225WXtveGn1JmjoGfUmaJ/USm60G/W59f0r26EvSFDLoS9I86ZXusLUTcaF/oBBhjb4kTSGDviTNk4HSnQkF/fp+JUlTw6AvSfOk1/O+fo1+4jSJYvUVGp6MK0nTbIsFmpKkmdLr0WfV0p1Egub7SI1PQDoASz9FpMtXrljf3h59SZo69uhL0jypD685okc/UZAW3k1qfAwoII6Sdr2NlH1t5b6629cvwiVJmhpjBf2IuCki7o2I+yLil0Ys/8WIuCciPh8RH4mIp0y+qZKkLVtj1J1Ei7TwW5DfMbTREmnxHaTsi4OzPRlXkqbaukE/InLgrcBrgGuBN0fEtUOrfQ64MaX0bOAPgH876YZKkiZglQtmJU6TFt8B+T39dTvPgbSvmmiTFn+LlN/eX+4FsyRpqo3To/8C4L6U0v0ppWXgXcDN9RVSSh9LKZ2uJj8FXDHZZkqSJmIg6C+UDzlJWvx1yO7vrRbtlxHLf4tY+nlIF1VzU1XW8/Fysn7BLHv0JWnqjBP0Lwe+VZt+oJq3mp8B3reVRkmStkn9pNlGgxSPknb9B8ge7s2O1o8QrdcRBJEuIs7+PBSX9Zan5ntJzfeQmg6vKUnTbKKj7kTE3wZuBF66yvK3AG8BePKTnzzJp5YkjaPWo58OniQt/hrEyWphRiz/BNG5YWCTYB8s/fekxd+C6qTc1PgE7D0BkYj6fiVJU2OcHv0HgStr01dU8wZExCuBfwG8IaW0NGpHKaW3p5RuTCndePHFF2+mvZKkrah63tMlJ0nP+Vgt5DeJpZ9aEfK7gt3E0s9A57r+zIU7SS/9Cikvyv2mtM2NlyRtxDhB/3bgmoi4OiIWgDcBt9RXiIjnAb9BGfIfmXwzJUkT0WqRLnuM9Mp7odm9GNYuYulniWJ4nIVBQZNY/rvQfn41I+DK46RXfoXUaEGns71tlyRtyLpBP6XUBn4B+ADwJeDdKaUvRsSvRMQbqtV+FdgL/H5E3BURt6yyO0nSeZT2fJ70A/dAXkBkkPYRZ3+OKK4ea/sgI1p/k2i/rJyRBXzXSdIPfYHUenz7Gi5J2rCxavRTSrcCtw7N++Xa41dOuF2SpAlLnQ+Svusj8EBVYtM+QCz9PNEbVWc8QUDrdZAuIMVny5kHT5E6vwrpfybC0kxJmgZeGVeS5kDqfIjU+UMoqnKdx/cQ979xwyG/LtovI+68FlKUM4ojpNa/JaXjE2ixJGmrDPqStMOldIrU+dNqooBHDhAf+G4i9m953/HQlcTHnw6dKPfNCVLn/VveryRp6wz6krTTdT4CVIOhndpP3PYsotWARnPr+240iAcOEX9+Tf/bguLPSOnE1vctSdoSg74k7WApnSUVH+tNx7euIzpVqU1zApdSaVT7eOAgtC6tZrag8+Gt71uStCUGfUnayYqPA6eriUvgO1UYT2kyPfrNJkQQKYjTL+7NTsUnSOn0GhtKkrabQV+SdqiUlkm1nvXIbyJa1Vj3Ef3e+K3I8+6TwZlrgG6v/lkoPrr1/UuSNs2gL0k7VfHnQPfKt4cg+z5otfpXsJ1E0G/2vxWIVpvIX9ObTp2PssqF0iVJ54BBX5J2oJTapM4He9OR/zARDWi3+ytNIuh395FSue/s+cDhauEpKD6x9eeQJG2KQV+SdqLiU8DRamI/ZFX9fKvVX2dSPfoRZdBvtYjIiPym3uLU+RAptdbYgSRpuxj0JWmHSakgdd7Xm478VURUJTbd0p3EQNnNpnVr9Lv7Bsi+HzhYzTwBxSe3/jySpA0z6EvSTlPcDjxaTeyB7Af7y7qlO8Fka/SrHn2AiAaRv7q3Sup8gJQ6W38uSdKGGPQlaQdJKQ315r+CiF39FeqlOxPp0W+UBw3D+85eAuyrJh6H4tNbfy5J0oYY9CVpJ0l3AQ9XE4uQvXxweatVlu0ANHK2rNkAotxn7UTfiAUif2W/WZ33kVKx9eeTJI3NoC9JO8SK3vzsZURcMLhSu00v6U/iglm9faTBHn2A7GXAnmriESg+u/XnkySNzaAvSTtFugfSX1cTTaj1qJfLa2E8pQnV6Nf2MRT0I3YRtW8UUvE+UncMf0nStjPoS9IOUe/NJ3sxEfsHV+jUTohtNMphMbeq/q3A8vLK5fkrgMWqgQ9C+vzWn1OSNBaDviTtAKn4KqSvVlP5wKg3PZPuzYfBOv/h0h0g4gKiNupP6txqr74knSMGfUnaAVLn1v5E9kIiLly5Uj3oT2LEHRjs0R8R9AHIXwV0r6D7DUhfnsxzS5LWZNCXpBmXim+U9fkAxMCVaQf0gj6DF7rainqP/qjSHSDiQP/KvAwdlEiSto1BX5Jm3GBt/o1EXDJ6xe7wl9vRo5/SwPCaw8pSouojJ32FVHxtMs8vSVqVQV+SZlgqHqrGzi9F9trVV66X1kxiaE3oj7oTsWqPfrn4Ishe2Ju2V1+Stp9BX5JmWCpqvfnxHCK7bPWVez3uaXBYzK2oHzCs0aMPVCVF1Ug/6Quk4puTaYMkaSSDviTNqJQegeL23nTka/Tmw2CN/qRKd5pjnIxbifguyG7oTQ+UHEmSJs6gL0kzKnXeT+8qt3EtkV219gbbMbxmvvbwmsMie01/In2OlB6eTDskSSsY9CVpBqV0FIpP9abX7c2HoaC/DT36a9Tod0V2BcSzq6lkr74kbSODviTNoNT5AFBd6TaeTmTXrL9RvYa+MaHhNbs9+ol1a/S7Bg5KittJ6dHJtEWSNMCgL0kzJqVjUPxZb3qs3nzYngtmdfcTjFW6AxDZ1RDfU00VjsAjSdvEoC9JM6asza96z+MpENeOt2E9iE9sHP1arf+YQR8g8tf1J4q/JKUjk2mPJKnHoC9JM2Rlb/4biIjxNh64YNbCZBpUD/pjlu4ARPYMiO+upuzVl6TtYNCXpBlSnrza7c2/GuK68TeuD685qRr94aCf0tibRv76/kTxqXK4UEnSxBj0JWlGlCPt/HlvOvLXj9+bD4M97pMq3Ynoh/0NnJALlCcQD9Tqv3cybZIkATChgZQlSdttsDf/qePX5nf1auhXlu4ss8zR7DhHs6M8lh3laBzjWHachbTAhekgh4qDXFgc4sLiEPvTPoLaAUavVz+Vz7GBg4jI30Bqf7mcKD5NSq8tL6wlSdoyg74kzYCUHh/qzd9AbT6QSDzY+DaPXnGEo1ce5bGrP8PRPQ9wNDvG49kxnognxt5XgwYHiwMcKg5yUXEhh65/kEPfbnFh6wIuaz/OfvaMva/InkaKayHdU7ay816i8d+Ovb0kaXUGfUmaAeXJqt1x859WK3lZXUHB/XyNO/ksd3EnJ777s7DvIVhuwaVNaD6+qba0afNo9hiPZo/xVb4Gz/4mPOMs5Dmx8C95Ks/iem7guVzPAQ6su7/IX09q31M1+jNVr/6TNtU2SVKfQV+SplxKj0Hxyd70Wr35BQVf475euD/JidrCov84G9w+I+NgcYALiwu5sDjIoXSQQ8UBlmKZx+MYj2dHOZod5fHsGKfj9OCTZlm3oaSiw9f4Kl/jq/wBv8fVPK0X+g9ycGSbI3sqKa6D9EXKXv33EI2/P+6vR5K0CoO+JE25sje/CulxTW1YylJBwX18lTv5LHfzucFwX3PB8gJXPXghFx5JXLj3RRza+4Iy1BcHOZD2k405PsMSSzyeHavKfo7y+Fee4OjSQzxyqMU3i0R33J1E4n7u437uWxH6D3FoYJ9lrf4Xqx/oDlJ6HRGXjvsrkiSNYNCXpCmW0qNQ/EVvujvSTkHBV/lKL9w/wcmR2+9lH8/heVzPDVzzyY+R3XEnnHwCnvF90HrOptq0yCKXFt/FpUV10uy9n4Fv7IZmgxMv+Cfcvfcod/JZ7uMr9GM/fJ2v8XW+xh/ybq7iqVzPDTyPGzjEISK7ihTPgvQF+r36P7up9kmSSgZ9SZpig735z6DIns5n+As+xPt5hO+M3GYf+3vh/ulc0++pb3+kv1JjQsNrQjnKTgQk2L+8i5fwUl7CSznBCT7PXdzJZ/kq9w6E/m9wP9/gfv6YP+QGns+ruIlL89eT2l8oVyg+SypeR2SXTa6dkjRnDPqSNKVSOgLFXwLQouAv84v5CP+So6w8iXYf+3ku13M9N/A0nj66DKfV6l/QqjnBt//eOPqpNoQn7Gc/L+YHeTE/yElOcjd38bkq9BfVwUtBwe18mtv5NM/Onsur4nKekh4EEql4D5G9ZXLtlKQ5Y9CXpCmVOrdyhmX+LB7mY9lpTmWD4X2RXbyAF3IDN/JUnrZ+jX0thJNPMuhX3w6ktOoFs/axjxfzEl7MS3iCJ7ibu7idT3MfX+mt83nu4u7GSb678w1eXVzJNcUdVa/+5ZNrqyTNEYO+JE2hE+l+Pp5+l0/kD3KWNmTP6V2iai/7eDmv4Ad5GbvZPf5O60F/UlfGBWjko59jFXvZy4t4MS/ixXyd+/kg7+evuBuAiH3cGxn35p/nqrSfV3fexrOz/23wAl2SpLEY9CVpihzlKB/hQ/x5+g1a2UPV3ENEHOAgh3gVP8z38yIWWFhzPyMN9Ojnq6+3Ub0a/TRW0K+7mqfy3/EPeIiH+BDv5w4+Q8qeAsVjfCNO8Pb4Qy4rzvDD2Zu4nhvGHhlIkmTQl6SpcIQjfJD38Rk+RTs9Aenh3rJLsht4NW/m+byAxlbettvtWo3+JHv0a21apXRnPZdxGT/Ff8treT0fjg/yKR6gzSMAPJQ+wzt5gvfwJ7ySH+b7+QFyJnigIkk7lEFfks6jE5zgfbyXT3Jb7wRV0jeBxBVpL69OL+V5+b+dTE92t7c9MRjOt6rRgACKjffoD7uYi3kzf4ub4rl8tPOP+GT2MEs8SkpP8GjAu/gvfIQP8iPczPXcYEmPJK3BoC9J58FZzvIhPsBH+TAtlnvzUzrNU4uzvDo9i2vTIbLGPyAmVa7S7W0PtqdHP7HloN91KLuOH+38OK/ufJpPxEN8nIc5m18DwBEe4T/zH/kwH+Bmfozv4ZkTeU5J2mkM+pJ0DrVpcxsf5/3cymlODSx7Gtfwus4STy/2lDPiOiJ76uSevNWiN5T9JHv0m03o9qxPKOgDRP4jXNC+k9emp/BDnTZ/Hi/iQ9nnOMNpAL7FN/kP/H94Bt/DzfwYT+EpE3tuSdoJDPqSdA4UFHyGT/NeblkxDv5lXM7N/BjPTBdC8Su9+ZG/YbKNaLXoJf1JBv3eUJ2rD6+5GZFdTspugOKz7KLBKzsneXH2v/NB3s/H+ShtyoOKr/BlfpX/g+dxA6/njVzCJRNrgyTNMoO+JG2jROIL/BW38F95mIcGll3IRbyON/B8XkBGRtH5j/SCeDyLyK6aYEMSdDr96YmOulP7KFleXn29TYjsR0jFnUCC9Hl2F4/wxuzHeCkv5328h7/kk70r7n6Oz3I3n+P7eTGv5Uc4wIGJtkWSZo1BX5K2yf18jT/mj7if+wbmX8BebuK1vISX9kbRScVDUHy2t87Ee/O7Pe0plRe4igmexNqo1ftPsHQHILLLSNmNUNwOQOr8KZH9DxziEP8Nf4cf4lX8KX/M3XwOKL85+SS38Rk+xct5Ba/ihzd2rQFJ2kEM+pI0Yd/iW7yXW/gCnx+Yv8Air+BVvIJXsYtdvfkpJVLnT+j35j+byCZcbz5wsawJv/XX9zfhoA8Q+etIxR2UvfpfIBX3EdnTAXgST+Jn+e/5Bl/nj/mj3pV2WyzzQd7Hn3Mbr+KH+UFexiKLE2+bJE0zg74kTcjDPMyt/Cmf47MD83NyXsQPchOvZT/7V25YfBTSXb3JyF8/+cb1htZMgz3wk5Bvc9CPS0nZ86H4DACp/Q5o/nMi+r/Lq7iaf8gv8iXu4U/4Ix7kAQBOc4o/4Y/4KB/mh3kNL+IlNJnwzy9JU8qgL0lbdIQjvI/3cDuf7tWLAwTBDTyfH+FmDnN45LapuIfU+f3+jOxFRPbkyTeyPob+dvboT7hGvyvym0nFXwFngKOk9tug8YtE9EN7EFzLdTyTa7mD23kPf8JjPArASU7wB/weH+aD3MTrvOiWpLlg0JekTTrKUd7Pe/lLPtm/2FXlOTyP1/J6LufyVbdP6Tuk9tvpl+w8lcjfvD2NHejRn/Bb/zb36ANEHIbGW0jtf09ZwnM/qfNfIP9pYuh8gyB4Pi/gem7gL/kL3s97OcZRAI5xlHfxX/gQ7+e1vL53IrQk7UQGfUnaoBOc4AO8j09yG20Gh5O8lmfxOt6w7pjuKZ0mtd5K2UMNcIho/NxAD/WkFCSW222Wdy3SiaDYv59OFiSgAxRAEdU90KFaFuXo+FmCHAgSeTWd0b/lu3cRey8gX16mASySaMDEr1ob2bWQ/01S593VD/YpiMshf/XI9XNyXsxL+D5eyCf5Mz7A+zjJCQAe41F+h//MB3kfr+X1XmVX0o4UKaX119oGN954Y7rjjjvOy3NL0mac4hQf4gMDY7h3PZ1n8AbeyFN52rr7Sakoe6bTl6o5TaLxPw+U7LRInIbqljgDnALODM1fht5taWh6uZpuA5w4AXfdXY6+s2cPfO/3bul3MeDkSbjnHigKuOhCeN7zyovvAosECzB0Cxarx7uA3QR7oLqtfLwLyKoQXp64/F+g+PPqyYNo/AMie/a6zVxiidv4OB/iAysuVnY5V/Aj3Myz+F4Dv6SZEhGfTSndOGqZPfqStI5jHOM2Ps4n+BhLnB1YdhVP5fXczDP47lUDYiJxCjgJnCRxvPMhTtLiZFzHyVjkieyVPJFdyhO0OEUZ4Ld62aleH073vp3KxwmIrOzKH2zkxnV/3JT1991J0IEUsAQsRbnjweqajT1ZUIb9PQQXBOzNf4K9HGJf+ib7WGJf50Ps5xL2Z5ewj2Af5cHEsEUWeRU/zEt4KR/lw3yED/Vezwd5gN/grTyFq3gVN/FsnmNJj6SZZ9CXpFV8k2/yMT7MndxBZygZX8GVvIY3cjnXcgL4HInjFBwHjpE4BpwgcRJ4gtSr4E/FtyEaENeXM+LJRHYl3fCbuoG5HtSHHyfKGps0dBtev3oYwOLxDgsnz9I4u0S0m2THUll60y3Dqe7zlAggT+W8FP3Sng5BiqFyn4DidCIdPUWREsvZbpZP0vu+I2rt6E1E7XFWu48RN8o2nI7yAOjRgIgg5S+H4nOUhxNA+hqkfb3Sp0Xohf6DBAeAAwQHgQMs8Gxexw28nE/xIT7OR2hRnkT813yDd/DrXMRhXsYP8f28aGAoVEmaJQZ9SaopKPg8n+f9fJwv8xBL7GGJp3CWPSyzm0W+iyt5Dt/hSfwawBp97ytCe3EcuK82fRg6TyF1Q3t1NJAoc+8FRbAnwe4CLkjB7gR7UtmzvTvBbmBXVRrTLYVZiKpcJpXTi936+q9+m3jXLXD6FOlpz4SLr53cL+3xY8Tv/teyLOiKJ5Oe+TIKEi1gOWApRpQWpXL6bJQlSWeB01lVlhSpDPZZ+fhsrXM+KIM/0YT8OmjcDXQgzkLxJRLfCxGcDTgbiSMBEat9g9CkwWtZ5JUc414e4ks0eYJFzvBtzvA1Psrv82Fexg28gpdzERdN7ncmSeeAQV/SXElVjfvjJI4CR6v7R1jmLr7BF3iAYyQ6fC/Qr2Pfz34u53Iu5CKKFJwa7k0vhm7VvG7E3M1Z9jVuZx8n2V+cZW/ay74zL2IfOXurnuf9BBck2F2F9E3Viq+Wadu1UXeaEz7htzuKT+o/T1bV4S8m2Ndr04ifp97eYuXicnbiTNWrfyoSxym/JTnJfk7mV3Jy8RM8EYuc4CgniwZPFNf2Dr+i+xTZiFtAK6AVC+yJ7+XJ8d18Ox7ir3l44CTrTwD/J5/mKg7yPK7m6VzMIYILCQ4Bh6r7hrX9kqaMQV/SjtIi8TjdIN9/XJ9XH+n9LGd5mIf4Dt+mnTpA1h/tMgWHi8Nc1rmCvZ29Zc1KFey7ve77i+BAAQeL4ECC/Sk4GHCgut9fBBekszQW/29ID5U7Tvtg6Z8T6RyWhNSHvcwnPH58b3jNtC3Da2bVAdAFCS4eDtOdp5GKr0Dzj6sZHyK13sxS+6WcyOBEJI4FHCdxAjgWieMBxyNxPCu/OehaYIEnZ1dxeTyZI83v8GD+IGezclSk5VjkK5zhK3EP+2Ifl3E5hzk8cDC2n+BCqA4C4MLawcCFBPuZ/EhEkrQWg76kmVFUYe3xgQBfD/FlT+8oaaj3/QTHeYiHeIzH6CX3atMGDa5oXcJ1y1dwaWc3h4qyzvsg5f2hVAb5vak/GsxqEgkW/jNkVcinAcs/R6QLt/rr2JhOrcRou3r0CWgPn+V7DrRvguxByG8vW9H8PXYVT2J38T181zqvzzKJ41l1AJCV3/AcI+fo0uUcjcv4auMIX2k+xNH8eG+bk5zk3vgyX2eRS9NlXMIlLGQL5cFDwNcjESPO483pHwR0vxGoHxBcSFmKJUmTYtCXNBWGS2oG78swf7R2UuvAtqNOUi0HhO+V0qQET2QneTQ/wtH82wRHWUyneRJnWEynWOQMl6U9vOLsjbx86XoOTOoEzOafQH53f3r5bxPF+kNw9n6uoftR84bXLycG52enWuQdoJ0oUpPO4OBBbHSk5YFRdDpNmt3f9dllWmdWWS9Gz4/oT693P7ItBGn5p2DxCGTfKBuy8BukpX9GpEvW/DkWCC4uqm8KRh2jLF1GwaXcmz/MB3b9BbcvfIVTLJTnbsRujqaH+HbsYVf7SRxuX8JFxWEaqdE/mTinVyrUzuBIdd4AqxwM7GblQUD94MASIUkbYdCXtO1SNQ58tyZ+uD6+G+ZHFX2ME+K7HfJQ5qqDneDCBIcSpDjKI40v8a3mXSzEg1ydTnNNpzUQlZ7R/h5evvQ6rms/a0VpRTdcj7rRfTy0XlHV5mfNz9DM3kfqlPOXT72apSe+n1T010kJigSpqO1jlVp1olwetft1f/fVenuOtLngNGRn4PTpBU4fWX3dcfY3ODPjorNBtKFIBUceKiDLVt1urLaPGDkoqvCcVfX1EZB1b1mTyH6OCw7/n2T5MYLTpOKtLB3/JbLYXa6brTyoqO83VrllETyzcxnPPPXjnDx9kj9f+AS3LX6cJ+JkrY3BUrabVn4BFxfXcWn72RxsP5VTrWb5rVNVJjRwPDXiYKB7AvKDkco2jTgY2Fc7N6B/ANAvETqABwOSSl4wS9KWdKpymqPVkJLdoSXL6f7jTYX4oRNaA9ibggsLOFTUQk4KDrRg/3Kwpw3fKR7hzsad3NW4m2+nR0idjKIIinZG0clInYyF1gU8/dT3ct3J53Po7JPodKDVgU5RVrm029CpplMqh4cvqoBedMN8Kpd3HxdFf/3IjrC49/0kEkURtFqXc/aJl5FS1gv1RfWzF6k23f2V1A4YSIMHBqm2Tf1gg9ry7lt7d5/ZA/eTP/B1aC3TvvQpdC59Su2FGPG6DFkRzIemFz//F9BuE3nG0ve9gsgbg0GaWnju7iIbDNvd4L5q4K6tB4PBvbtd1niMPfs/SBYtsiyROpex9MQriMjIsu5BweA2eV4+zrOyTb3H1X2Wles0GuXpCM0cyFt8be8XuHff53ho9/1EXpDlRe8+bxQ08ozvaT+T57Wfx3Wd62g0Fji1CMcbiWONxNEMjkbi8SgPdo9l5d9J/dffPQipHwyMGop0+PXZV5WaHaqVnHXvu/N24zkD0k7gBbMkbUhKsFwkHmvDsU7i8TYcKxJH23CsnTjWgROd8v5kO9FpR9lr3YGiA0ULijak6la0g1TNK1rVvFaUy6ttOm1otGGxHSy2YaEFuzpBswXNFjRaQWMZljrBtzrw9U4VxDvQKRKnOcOx5mMcbR7hdP4EcAHwA/3uYKCRGhxsXcSh9sXs7xzkXjLu7YbQ6mdfrdRkXMEyWfNb5I2HgDJMp2IPraXnUhsDpv+7Xut12PjTr7qfxlLQKJpEkWgXTdrL6262IZ20SBRBipylM4nUKFs/iRi53j4Gl19Ilr+CxsKXe3NScSed9lMoOoc336LhkimawPMgPY8iljjaeJTHm0c4lZ8YeN1uA+AJsnQ7B9sXcah1MfvbB2lGgzwvDyQajfJAIs8TeQPaTWg3E60FWG7AUjOx3ICzDVhuJMghy8vLMWQ5ZA2IRiJrlo+zhXJZNCBrpvK+kcr1etsmFnI42AgOZHCgERxswKFGcDAPDuVwYSO4MIf9jfJbDUmzx6AvbcDA1UbrN+gPDTi8rHZLCTqtMpy2W2W4HXjcne5AZ7nqXa7W7/YyF+1yedGpep1bVU9yu79e9767bqe3fuJsB850EmfbcLYDSx1Yblf3HVjuJFqd8kKq3eHHq5LisqeaIFI5Ik3354pUXlwphn4nUfSjbZ6gUUCzCBoJmkCzKG8NgkZRjfeeBrJ573pK/ZhRXtCpFUuczU5zNjvNUnaa/bS5FIBdkHbXtg/2dPaxt7Of3cUFvfb3X6yVDwcizVDajqH1+t82dMizYzTyY2Ub05OqzTNarStJaXCkm5HHE6N60lfOWnP91bZtHNtL44nLodOhXRykc6z/9r/qMPNrSEMNW3jscqLoQARnv0z5Yq7fxIFGjlp35PbDJTDD68XF5HlGnh3t7T7FMVI6Q7tzIZ20h1G/2eGfKcXgWr3nGF6PBYLLSHEZbVqcyk/wRH6C5Wyp/00LVL/oR0g8wmLazWLaw65iD7s6u8nI++tG+U//Tymq7cu/wXYG7Ui0snJ40HaU85Yp53Wi3Ed3m94+q3mRldPLAd+pbt1lKSj/mKE8kbzaRyODhRwWG8FiXn6rsSuHxTxYbCR2ZcHuBiw2oJEHWV5++9G9Lw9k+vMaOeTN6nH1TUlvvdrjRqM8eGnUljWa1eNmdaDUrOY1qm+J6hdh6/4OVrsNrefxjHaa8xf073uAzhv+6fjrT6Jra6P72GxX29ifVptYf81PtxHzxtn3RvdRz0Zr7WucfYy7fXc69csXusG5V59dK3NIw8uGyhwY3kdtevg5VuyD0fe9dUbcDxwgrCOjHEN9HPXjjNHHFuXS+jHIqjtafXJdVTlx+bh+S4Pz1rP2n0lBEQUFBSmKfggZ3kMVzjJy8pSTk5flCbXyke660W1cdV//GUadOBqkwR+k+1xxljxbovtb79Wik1MUe0i1t9rhfZcz08rfT4x8OPIXGd2ffY19NE49QX72DBQFHfbSWZrs0J4Lp4+WR6YBy48eJuVVelolqY/zf3Gd47HBJMvK96MszpLF2d5WqVq/SA2KYheJxooTmLvBesX+0uDfWn2iF8aH1i8o6ESbDh0SqbZ85YuYEUTKycjIhg4KV7Pa39SK94QYmq7N26i1/p/WZw3eYpX5q+5iVQWw7pdR0f87q9/3zsXorhZDy0as25vX3S6r7XN4eX3/tekVzx+D+1+x7fB5GbHK43GXrbXN0M++wrjPvZntN7vOOPNHLVvvP9pG9rWeCRwwRg7ZH//qlvdz3oJ+OgvFvedhGLYZMfyBtWK698/Qhw6DH47DH5QDn0PjfIj11ot+sOpOD++zvo8RBwNpuI1p9M8xPG9USN5oEF3beHub1HMO72f4Q3nteTFyvUk0ZrUP8Kz7zN0PqyrIZt3H1D8o++v2WjsUsOtBt7vN8LxEoogORdamHW06WQsileXJUYtivSOMRFCWpiykBZrFApG6Z+pOflz3MroksvwseXaGGBoLKKUGnWIPRdEkz8aKJtuj9vpmqU1WXQigiA5ZWv2KvpsRFAQdIMjSMilt8uNlvbCwIRnELvLsDHnWD/ylExRpoXqdJnxdgRE6WUErW2I5WnSiDUTtD7l24FM9zlJOo2iSFw2ylJOl6i9urQOMEe/B/fdvRr53F6n866kOUfsHAql32Nr/IYY/J+oP1nyN1n6nqufM7kHr8IHAcBZcLRvW3oa2ZPz/chNIdKP2Nnyw0n0cQ884Yr2R77VrPe5tkwafr7avFfMHGsvANyHrPdeK/Q3/TKP2Odlf82zYla045tuM8xb0253E40cn80GzsodnjPXGWGnF+r03x9X/x40M5CN3FiuWb/69abKx95w+e0xgH2PY0P5X/B9Y4/VmZW9Z/3H/w7tf5VK+o/W2qfX41D+9UpRhOtXeZMtbUQXh/rxg5faD+0zVp0PZmqwKzHmULcxJZKTqXL9EozZvwMjekcF1VvQSrtMLU0SH5axFO2vRypZp5eV9JzqkWG3f5YdRljJ2dXax2NnNYmcXC8UC3Z7Ddix316zvYWWbxvnwGFHX0mieYGHhMbJoD7StKJosL19Eq7MbaFe31X/+tZ931MzN/6Xs+vbDxMkTRLtN65JLae3dt+l9jZI9+C3ys0uQBUuXP5VicbPfGIz4wcf5sddcJ8ho0lx4jGbzRO+/blB+CLbbe1levoiiGPoubdxu7zTqcX/b7qM85ewmpxMdlrKzLOVnOZufZTlfWrHd8H+7SBnNokmz06SZmjQ7CzSLZnnexVpvpCv2M7zCiG1HfI4VBO3qcK57X1SHuB2CIpWPU++Podr3aiWNrPK4erNMVVtTqrW5Vi7Y3aZbLtj79jBVhzVp+C2x1ilRPwAe/nWskOge2A//ytazpWw6Zm/OJA5szm+G3tyzrzyAGPFLGHUAscpBRX9xWrHC8AHK2O0bY8Gq6yVgd4PvGu/p1nTegv7ju57Ebz/rX0zkMG299+I13/tGfqakgfVilecYDvz1wNdTvaOk4fkj9lmfHv4b7+87htZNA+sR9W36//37y8tH3ffgweeKlT9DrFx3xXMNB7Lhn2XoryRF6gXV4c+W/q3/tlpUZQ31582yRHRv1UlsZZF4dxlElkgZvRt5IuVQ5FBk3fusvM8hNROpAUUjSA3o5NBpBp1GUDTLE+Q6edBpBkUDOo2ARvk8WV62IxrV83dPjssSZNXJchnlOsHID64oej9w7YNr+D9e738kEDRTwa6iYHenYLG6313d7+oU7Ol02NMup/e0O+wq1jpMnbxEYilb4lTjJKcaJzm2cJSji4/y2MKjHF18lDP56aEtmtVtpd2dPVx2+kouP/1kLjv9ZC5avphzO2JIYt8FX+KiQ7ex0Cw4zaHeknZ7H48dexHHTz6bXnH6lLn8T/+QfV/5MvnpMzx006s5dfXTJ7r/K/7k3ex6+CHIc77+Uz/BmcuumOj+J6XZOMZFh/6M/Xu/MLTkNCeeeCqPHX0JrfbBc9qm5WyJh3Y/wEN7vslDu7/Jd3Y9vOJAd1ABnAXOEik42LqQC5cOc+HyYQ4tHWZfez8XtPZyQWcv+Wa/WdmkTsDpPON0Iy/v84wzjZyzWXCmkXMmy8rHec7ZLONsnvUPDlbovt8BkaqOkX6CH+woqT7bEuXAAEU1IEAHiiIr57UhFVEOCFAEtMvzm6IT5K1E3k7kbcjaicZyIutAvtydB3k7ER2INkQ7iA7kBUQnkbUTUZTrRRHlaQ7tqlmdqIbNLT9Qi6J8nFKQOlFOd6JcXpMBpP67XPdTsXdwksoRoup9GNH7XaYVBwH1EkuqdXubp9pzDk8P9ZF0D6aG+l56++y1ZWBfaWBf9f1BDMSI7s+5or29/Q0eeI36U4mh9Qfmr/KnNWqftf+Boz9v1jj+G/fTaVR7UtHiwOGD/Hdj7mMtY70DRMRNwP+X8hPsHSml/2to+SLw28ANwGPAT6aUvrHWPk/uKrjtmhYxapDgidlICNjiIfFYz7v+c2S1/51ZdUGVLKt6IqrHkHrD0mVVz29UvbZZJPJe4C3nd++jG4Kr9cth5FI5xFw1v9xf9Narr5/lVTuqdaL6K0xQDfmWiCxIWZVVA1IWkEHKEim6y4KUl8uLHMiDlBekLMpbowzmRSMo8kTKM4pGIuVBkUEngiILOgSdCNoRdLKgE+WyTlbNi9qfZe3wf6CcpP4O1Xt5UvcIhm6hfgALK4+6BnqUgPIHpzuv9n97ZMdu/y1kIRUsdsrQvlh071P5uDu/UwX5KsTv7hQ0JvnfdgMSieVsidP5KU43nuCJxhOcap6sAv2pXrA/1ThVlSlsTJ5yDi5fyEVLF3PZmTLcH1y+6BwF+0QjP8HiwqMsLDzKQvPR8nHzUbJssASn09nDY8e+n+Mnr998qco5Eu3+65DyyR+MpKy7zzTwXNOm1T7It4+8nsePfT8XHbqNfRfc21u2f+8X2L/3C7TaB1hevoil1sUsLx9muXWYpeXDpDTu2TMbs1AsctWpp3HVqfJCaq1Y5tu7H+TBPd/k27sf5OjCY5xqPDFy2xSJowuPcXThMb7GvSuW7+rs5oL2Pi5o763dyum97X3sae9lV2d3eZGvCcgT7GsX7GuvdjGIofYDS1lwJs84k5fBv3tbyjLO5sFS93FU8yNjKQ/aka0ISdnQwQGN/ht8/0Ch/77fe5se0d1f5XJao9Nmr88l1RekWidgLyAn8gR5UZCnRF4kGqmal9LALSsS0YasA1mnmu5AdMp5dJcVCTrlQQWd6huMDuQU0IlyIISUyLo/RDVdzi8fp063ndEbzhegKKoDk+qzrlMdqBSpe8BSPa7ui2rdctjg7r5q6xZD26eoPVe5fPh5U3c44dq2JAaGEl7bWp8Vk/rg3L6M2SrOcs0lk3kfXfcvOyJy4K3Aq4AHgNsj4paU0j211X4GOJpSenpEvAn4N8BPrrXfPYfavPBHj5DH+B84vZIFqB9i1VYo/+mVzwwPj1HbT72XuvwqpwyuRaJ3SNs9Oab+8kRUbwxVL3PR/R6oCt5FEb3HKUv9P/ruvKo3O7KALJVH8lk5XVSN6fZm9zt4y4Z2e8oHer6jv36Ksj399cre8+5XrL1to/+VK1EG5u62dPdR3Rfd+aQyoEfZnk5v/yP+q9d/18NdAfWHo/5GRv0tDPdsD60z8Ebf7U0oqv/cqbbOQC96/404atsNPkms8xgaqaCZEs0isVAkFlKHhSKxWCQWUlE+7lT3xeD0QhXeF4s0kTq81SQSnejQjjbtrKwPLuve27SqeuF21qYTbZayJZbzJZazJZayJZbysyxn1XS+xFJ2trd8EvLU4MKlizi0fLjWI3kRB1qHmEx14moSER3y/AkWm6MC/dp1/UWxyOPHv4+jx5+/beFv0qLd7v0NpHzyByWp0egFn+hM//lXy63DPPzIj/H4wsMcvvA2Lth9f29Zs3GcZuM4F3D/wDat9n6WW4dZXi6D/3LrMMutCymKRcYpAhlXMy1w5emrufL01b15Z7OzHFt4jMcXH+XxhSMcXXyMxxce42Tz+Jr7Opuf4Wx+hscWH1lzvTzlLBSLLHQWWSx2sdhZLKeLRRY7u1is7heKRRpFk0ZqkqecZtEkTw0aKScvGjRSk0ZqkBcN8jG+3QpgV5HYVXQ41NrY/5t2wNksYynPWM6C5aw8AFjOMpaGppezKA8QsqCVZbSivF/Oys/DwZG41uqsG1pW+4a6O13PFqmbS6IaHanKC/UPrrVLHtPK5qzRvDQ0Xd6t/vmZ6H4ZnsgSZClVI6ilXjOj6o3PUipHWKO7frnnqm+xOk4qqnmpt12jWt59nt7xVrWfSINlVb3HpKHpKlMkygRTdH+NQdY/qYSgHO4Zyp+jF/q6yyOV3wqk1CsN6/4eegcTqTofrHpx6oNzdDucUq8tDJaYjXjphr+1GigFq56vvsbx1kme96QLgANs1Tjv9i8A7ksp3Q8QEe8CbgbqQf9m4F9Vj/8A+A8REWmNq3Gd3N3iA8/5a87XGRbn9lmHk+nqa264XSt+wxP4ydY68Ewjlq93oLqB5Ss61xlcNtYxce1XkKUOedEhTx1y2jSKFo2iTZ7KW6No06g9zlOrmtcir+6bRau6X6ZRtMiLcl6e2kQkhku9gN7X7r1Rb6r3mTNRXiE2RYKcslSo6mkqT0BN1cFYeV9U+y8PsFLv1omi9riaT6LIqmVAEQXtrLxNRNUrtNAef1QggIVOzr7WIvuWFzi4vMjFZ/Zw+MweLj6zh4PLu6o3vEeq25DyKKw8GK+P3VnNj/qHKonICiJrE3mHyDpE3ibyNlneWTF/QLec/sw6v4LWAqceehonv/k90M44xGc38Js4vxaO9wPhtvTo5/0e/f1f/iKLR9YOltPkDE+mc2AX+6/+IosHj4z4xC4t8h3gq/0ZDXqfomUZRqO8FXntPicVDVInp+g0oMirD/1uL1K3c6qbCqPfQdSbv1rLF1nOLuLRXac5svs0R3af4rFdZzixsMzJ5jJPNJfXKQFaqQOcprxC71aPXSIFzSIjTxlZit4t791nvemozc9SkFU/dzkaUVQhMKrpqnOutxyg7MUuw1+wG9jT62eKXnvK6f78BKSU0c6atLIFOlmDVrZAO5q0sybtWKCVNehEg3bWpBMNOlmjWt6g3ZtuVMua1eOcTuS0ozGYc7bYmbzic3Ccj/y11llt2ajO1HGfbyyjO2I3uOWYK5y7xLfFl7enU3T4auMRfoIf3fK+xgn6lwPfqk0/AHzfauuklNoRcRy4CHh0tZ22sxZH9n5nY609nyb16u1A5XcCBZHK+yx1BuZltKtlHTKqZalNRkGkdjm/t7xNltrV8nZv+6y3XpuMVm1+q7zR6i3LUrs3b+S3DatknO0co+V8CNaqeN+6xSLY287Y38o40Crv97cy9rfr08GuIgNGlB3UQtLEdarbJl/MtJTTObqb4uguiqO76FT36UyDXTzOLv5ikq0957Yj6Bd5g24oPfClL058/+dG0MoOkx1YIjt0lvzQ2f79gaVVDwA2sPttOYXjSigPUocOVAsSpxqJ482C482Ck42i9/hEdTveLDiTlx0G26n7/rpT5NVtcdTCoQ6xgowimhQ0qvsmRTQoYqE3L0WDgrycT6OabpAir9Yph0ko75ukyGrT5fAJ5eMGKTIK8vJxb35Giv7QC/3H2/nN6Q5wfvqiSSnR6Qyfw7Y557SoNCLeArwFYM9znsTe5W9ucA8r34hq45qs/ry9769Wrju8/eB0+ZVSd3qtdaP+vQ5QL8QZ3Fd/2+h+l5RGDm7W+wqsW5DTXb8cNrA2Xf1s/YKcovoqrOhvW9umDODlsowCUlGbXwX0sj+ZLHWqfZTblMPz9cP80JeCU8fjs1IjlRekaqaoLlIVNIqgmcrHzQIaRbBYBLs7wa4O7G5n5X2nvN/VCXZ1usurHrc1lX8DHaa0jKMTZaB/fIHO44vl7bHyPp3OWfkOv1TdZluKjEdPFBRnHpvofptpF4unlkhZRlqa0td8XI8DX+8eJlejE2UF2cEW+UVL5BdWt4uWyPe3yivBTekb4Z5l2ANc2jvKWHmkkUhlGUyeOJOn8r7Rf1yffzZPLGfQyhLtLNGK8nErozfdzhLL2egrXcyjoCCnPZWn6ZdpI68dCOTVQUTtFt1x2YIiyvsV60X3oKFX6FPNi968+vplOVPU1q+Keoa26a5XK+7pL4/BQZ778+vFPqxYDlTbUpvP0HR3vfpXG/X9jd62/3B42Sj95cPrBrC/M5lhmccJ+g9SdRhUrqjmjVrngYhoUBYVrfgUSSm9HXg7wNOfdTD90rf/ajNtVu8IfBrfNvo287k3qZMtx/o2c+hM/PXa060fXG1Zd16/VLP6urn7tTH0vnLuT5dbdL9+zii/ti7LOKP/VTX0vs7uffVN+dV3noKcwa/Bu8ua1W1Tv9fuV/cT/Uqg/hX2mG0aPltuoMyh/ri6dZpVTdSIW31+lsFuyu8jL5/IDzf9sox0/fVceeWV66+7Ua0fJW6/Hb4zQ9/UTkwCOuWQK1mb8mzK9urT1At6hx9Dr+974OSiNQyeqDSZH2lY91uyMSXKcsJWFLSj6JUYdkgU1XQnEh2qZXTLEIuyDLFWzti9PF63lLG3jH7ZY/c5gdq5bN35/XLI7nppqK29x0Fvm1HLB3/G2uMxvhGZ1Cuz0UOo2Trgqv+fn/EOgy26ID8Al2x9P+ME/duBayLiaspA/ybgvxla5xbgp4C/BH4c+Oha9fkAB3c9nb9x3S0bb7Ekafo0m/DSl57vVmjKjCxtkXTOrBv0q5r7XwA+QNmF/JsppS9GxK8Ad6SUbgH+E/A7EXEf5Zeeb9rORkuSJEla21g1+imlW4Fbh+b9cu3xWeBvTrZpkiRJkjbL060lSZKkHcigL0mSJO1ABn1JkiRpBzLoS5IkSTuQQV+SJEnagQz6kiRJ0g5k0JckSZJ2IIO+JEmStAMZ9CVJkqQdyKAvSZIk7UAGfUmSJGkHMuhLkiRJO5BBX5IkSdqBDPqSJEnSDmTQlyRJknagSCmdnyeOOAnce16eXNvhMPDo+W6EJsLXcufwtdxZfD13Dl/LneV8v55PSSldPGpB41y3pObelNKN5/H5NUERcYev587ga7lz+FruLL6eO4ev5c4yza+npTuSJEnSDmTQlyRJknag8xn0334en1uT5+u5c/ha7hy+ljuLr+fO4Wu5s0zt63neTsaVJEmStH0s3ZEkSZJ2oG0P+hFxU0TcGxH3RcQvjVi+GBG/Vy3/dERctd1t0uaM8Vr+dEQciYi7qtvfPx/t1Poi4jcj4pGI+MIqyyMi/n31Wn8+Iq4/123U+MZ4PV8WEcdrf5u/fK7bqPFExJUR8bGIuCcivhgR/3DEOv59zoAxX0v/NmdEROyKiM9ExN3V6/mvR6wzdZl2W4N+ROTAW4HXANcCb46Ia4dW+xngaErp6cD/Dfyb7WyTNmfM1xLg91JKz61u7zinjdRGvBO4aY3lrwGuqW5vAd52DtqkzXsna7+eAH9W+9v8lXPQJm1OG/jHKaVrgRcCPz/ivda/z9kwzmsJ/m3OiiXgh1JKzwGeC9wUES8cWmfqMu129+i/ALgvpXR/SmkZeBdw89A6NwO/VT3+A+AVERHb3C5t3DivpWZESuk24PE1VrkZ+O1U+hRwMCIuPTet00aN8XpqRqSUHk4p3Vk9Pgl8Cbh8aDX/PmfAmK+lZkT19/ZENdmsbsMnuk5dpt3uoH858K3a9AOs/E/eWyel1AaOAxdtc7u0ceO8lgB/o/oq+Q8i4spz0zRtg3Ffb82O76++cn5fRFx3vhuj9VVf+z8P+PTQIv8+Z8waryX4tzkzIiKPiLuAR4APpZRW/duclkzrybiapD8FrkopPRv4EP2jWknn152Ul0h/DvD/A/74/DZH64mIvcAfAv8opXTifLdHm7fOa+nf5gxJKXVSSs8FrgBeEBHPOs9NWtd2B/0HgXqv7hXVvJHrREQDOAA8ts3t0sat+1qmlB5LKS1Vk+8AbjhHbdPkjfO3qxmRUjrR/co5pXQr0IyIw+e5WVpFRDQpg+H/P6X0RyNW8e9zRqz3Wvq3OZtSSseAj7Hy3Kipy7TbHfRvB66JiKsjYgF4E3DL0Dq3AD9VPf5x4KPJwf2n0bqv5VCN6Bso6xE1m24B/m41uscLgeMppYfPd6O0ORHxpG6daES8gPK93w6VKVS9Tv8J+FJK6d+tspp/nzNgnNfSv83ZEREXR8TB6vFu4FXAl4dWm7pM29jOnaeU2hHxC8AHgBz4zZTSFyPiV4A7Ukq3UP4R/E5E3Ed5MtmbtrNN2pwxX8v/MSLeQDnSwOPAT5+3BmtNEfG7wMuAwxHxAPC/Up5YRErp14FbgdcC9wGngb93flqqcYzxev448HMR0QbOAG863x8+WtWLgL8D/FVVCwzwz4Eng3+fM2ac19K/zdlxKfBb1SiEGfDulNJ7pj3TemVcSZIkaQfyZFxJkiRpBzLoS5IkSTuQQV+SJEnagQz6kiRJ0g5k0JckSZJ2IIO+JEmStAMZ9CXpPImIW7sXYNnEtm+MiGs3ul5E/EpEvHIzzzli38+LiP+0xX28MyJ+vHr8jnF+pg3s++KIeP+k9idJs8agL0nnWHVF0yyl9NrqUuqb8UZgnFA8sF5K6ZdTSh/e5HMO++fAvx+eWV36fcNSSn8/pXTPllvV398R4OGIeNGk9ilJs8SgL0kTFhG/GBFfqG7/qJp3VUTcGxG/DXwBuDIivhERh6vlfzsiPhMRd0XEb1RXXyQinoiI/z0i7o6IT0XEd0XEDwBvAH61Wv9pEfGzEXF7td4fRsSeVdar96C/IiI+FxF/FRG/GRGL1fxvRMS/jog7q2XfM+Jn3Ac8O6V0dzX9ryLidyLik5RXhrwqIv6s2sedVVu6Bzn/ofpdfBi4pLbPj0fEjdXjt0XEHRHxxYj417V1RrYtIl5a/Yx3VT/TvmqTPwb+1kReWEmaMQZ9SZqgiLgB+HvA9wEvBH42Ip5XLb4G+LWU0nUppb+ubfNM4CeBF6WUngt06IfTC4BPpZSeA9wG/GxK6S+AW4B/mlJ6bkrpa8AfpZSeX633JeBnVlmv+5y7gHcCP5lS+l6gAfxc7Ud5NKV0PfA24J+M+FFvpDxgqbsWeGVK6c3AI8Crqn38JP2e/x8Fvrta9+8CP7DKr/JfpJRuBJ4NvDQinr1O2/4J8PPV7+8lwJlq/h3VtCTNHYO+JE3Wi4H/mlI6lVJ6Avgj+kHzr1NKnxqxzSuAG4DbI+Kuavqp1bJl4D3V488CV63yvM+qetD/ivIg4bp12vndwNdTSl+ppn8L+MHa8j9a5zkvBY4MzbslpdQN2E3gP1bt+X365UM/CPxuSqmTUnoI+Ogq7fuJiLgT+Fz1s9TLlEa17ZPAv4uI/xE4mFJqV/MfAS5b5TkkaUfbVB2lJGlTTq0yP4DfSin9sxHLWimlVD3usPr79juBN6aU7o6InwZetoV2Aiyt85xngF1D8+o/3/8EfAd4DmWn0tlxnzgirqbsoX9+SuloRLxz6LlWtC2l9H9FxHuB1wKfjIgfTil9udruDJI0h+zRl6TJ+jPgjVWN/AWUpSp/ts42HwF+PCIuAYiICyPiKetscxLYV5veR3niaZPBmvTh9bruBa6KiKdX038H+MQ6z1n3JeDpayw/ADycUiqqfefV/NuAn4yIPCIuBV4+Ytv9lAcNxyPiu4DXrNeYiHhaSumvUkr/Brgd6J5X8AxWlhhJ0lww6EvSBKWU7qTsXf8M8GngHSmlz62zzT3AvwQ+GBGfBz5EWRqzlncB/7Q68fRpwP9SPd8ngS+vsV73Oc9Snkvw+1V5TQH8+gZ+zi8DB2onvQ77NeCnIuJuytDd7e3/r8BXgXuA3wb+csS+76Ys2fky8P9UP9N6/lF18vPngRbwvmr+y4H3jvVDSdIOE/1vhCVJGl9E/E/AyZTSO853W1YTEbcBN6eUjp7vtkjSuWaPviRps95Gv15+6kTExcC/M+RLmlf26EuSJEk7kD36kiRJ0g5k0JckSZJ2IIO+JEmStAMZ9CVJkqQdyKAvSZIk7UD/L3oW8S3+gVMGAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "N_theta = 16\n", "theta, B_sf, B_V = np.pi/2, .1, .3\n", "bins = 60\n", "th = np.linspace(0, np.pi, bins, endpoint=False)\n", "fig, ax = plt.subplots(1, 1, figsize=(13, 8))\n", "B_theta_ = [np.pi/640, np.pi/32, np.pi/16, np.pi/8, np.pi/4, np.pi/2, np.inf]\n", "for B_theta, color in zip(B_theta_, [plt.cm.hsv(h) for h in np.linspace(0, 1, len(B_theta_))]):\n", " kappa = 1./4/B_theta**2\n", " ax.plot(th, vonmises(th, theta, kappa), alpha=.6, color=color, lw=3)\n", " ax.fill_between(th, 0, vonmises(th, theta, B_theta), alpha=.1, color=color)\n", " ax.set_xlabel('orientation (radians)')\n", "_ = ax.set_xlim([0, np.pi])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Getting everything peaking at one:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvoAAAHgCAYAAADUusm1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAD9X0lEQVR4nOz9d3Qk13nuC/92VXVGTpMzZziBYZhmmERRpMScJFKyZMmybGVLthy+s75717rr3m9dH59zHCTnY1uyLVvBokgFKjEnMWcOwwwn5wEmIaNThb2/P3Y1uoHBzCB0A93A/nGB6AG6qwqNRtez33re5xVKKQwGg8FgMBgMBsPswprpAzAYDAaDwWAwGAzlxwh9g8FgMBgMBoNhFmKEvsFgMBgMBoPBMAsxQt9gMBgMBoPBYJiFGKFvMBgMBoPBYDDMQozQNxgMBoPBYDAYZiHOTO24ra1NLV++fKZ2bzAYDAaDwWAw1Dyvv/76SaVU+1jfmzGhv3z5cl577bWZ2r3BYDAYDAaDwVDzCCEOnO57xrpjMBgMBoPBYDDMQozQNxgMBoPBYDAYZiFG6BsMBoPBYDAYDLMQI/QNBoPBYDAYDIZZiBH6BoPBYDAYDAbDLMQIfYPBYDAYDAaDYRZihL7BYDAYDAaDwTALMULfYDAYDAaDwWCYhRihbzAYDAaDwWAwzEKM0DcYDAaDwWAwGGYhRugbDAaDwWAwGAyzECP0DQaDwWAwGAyGWYgR+gaDwWAwGAwGwyzECH2DwWAwGAwGg2EWclahL4T4dyHEcSHEu6f5vhBC/J0QYrcQ4m0hxMXlP0yDwWAwGAwGg8EwEcZT0f8P4KYzfP9mYHX48QXgn6Z+WAaDwWAwGAwGg2EqOGe7g1LqGSHE8jPc5U7gO0opBbwkhGgSQixQSnWV6yANBoPBMDZKATlQWSCjP6ssUPjsgnL1ZzxwM5DuhXQfZAchnwU3rxjIQ19ekQ0U/UGWvJfFd7NYloUTq6fOjlFnR0lFoTkqSMYE0RjEUpBshLom/dmKAVEQUSACxEAkQSSA8LNIAAkQkRl5ygwGg2HOcFahPw4WAYdK/n04/NqZhf6Bw/DF/1aG3RsMBsPsQSkgQAv0POCB8vRnvFC0eyVfDwA19nY8D3xff3g++AEoqb8fQV/SjQM+imZgCQqJDDcoi9sVAhAILCwsRPhYG4ENCCAdftg2OA5EHP258DHGIeqNOOGiwClZHIQfIoJeNBQWD2Lyz6vBYDDMRcoh9MeNEOILaHsPG5L10D8wnbs3GAyGGUdJIC9QeSustFta1HsCXKE/B2fbyKm3/UDgegLPB88X+MGou6jibV8IfCFQJcI5EBKFRAAINWofCgRIpe9jKRuFIAjvZCuFI8FCoTzwgRxFYS6EFv4RRxFxFFFHYRWMo6K4K3U2IR8BEVUQUSM/xxQiFv7bLAYMBsNcwbKhPnXGu5RD6B8BlpT8e3H4tVNQSn0T+CbApS3tCsdctzUYDLMLBWE1XmhBnyMU9kJX6N3TKFE1xuexbodIBXlPkPch7ws8QAr9EdggHUUgQBJ+CMjbkI0IZDQUyFGFikA+miWI5LDtHBGnl4jI05rPk8xJfEcxEI/Rb0fwgzoCvwEZxIi5SWzP0T9PaA2KuIJkoEW/UGHVX+nKv6XA8gW2B5aCmAUxRxELFwCnPCsi/Ci97YHyw6dkrKfRQgv+GIh4cQEgYgriIEzOnMFgmE343lnvUg6h/3Pgq0KIe4HNQP+4/PkL58Nf/F9l2L3BYDBMP8oH1W0hj1uo4xbyhK1vn7BQCIgC9SUPKDhiFKiAEgXOqb4WRyEaFKJeIuoVIqmgTjGgFDu7bbYet9nVbZFzwHMgUBBICEJ7ToEFLQGL2yRikWLLGkFmMUQbFL7Q7p+oVEjrWTL20ySDAUS0kytEhtuHFtK4pRP33+bjLO6j5UsRdrco7q3fw+HMahSQc5axLP1JTkZbUYANWB74JwWr9sDKvZLukzYHj9sMZrQqVyq09thgW6GFP4CWCJw3z2ddm2RZvcRxBTItIG2hBgWq30JlwlXLaKzihyj4iAreolGLAdEksdolVodEdARYHfo2deZKgMFgqEGG0rBmFXzzr057l7MKfSHED4BrgTYhxGHg/0G/P6OU+mfgQeAWYDeQAX5nygduMBgMVYIK0EK+y0YeDYX9CRvZbZ0qPEvt7QUxP9pDb4FolIgmiWiWiCaF1RAK+nqJqJe6+hwKz74hwWs7IryyPcLBY7Y+JkBGtaj3syAlxKOKNYsDVi30WTYvYFFbgBWFX82L8HyzDShsIAvU+4obTnpYvMSj8+8nFQTkyfEhP8IdueUI8uR2LsYKJP7+BmTeYbmv+PxAgn+M+ByTGeq8d7HF3/L5fX/Eay0NbGm08SJgL1B0LoDM5YLfOJLjnLSkd0hw8JjNwRMOuw7bHDmpf46s0leeByQcOubwyAmIRRUXrvLZdJ7HuqU+tl3yexgSMBiK//Cz7LVQhY+sOHXRpJsJ9OeTFkG3RbCTEYsAkVBa/LcHWPMk1nyJtTBA1I/ZWWAwGAw1g9BhOdPPpeedr1579LEZ2bfBYDCMhcoIZKeF7LS1sO/S1Xrll6jCgo1Ghn57n2JlPkTEFaJF6o9midUSCvsmqSv19pmPw/PhjV0RXtwaYcchBxVa5oNAN9gGPiBgaUfAhmU+a5b4LG4PsEusKUdjgu8vinI0JlBAHrCk4rqTHpt7AvqiR/n3FX+HLzxy5LgwO5/P2ceAABkIvG+0k9jfCTJg8MvnkTp/OwjJsaCVv4z5ZK0MUaKcN3gxHzn8KU7ELB6ZF2FXykahL2hEgfd3+9x03Kf0Rx7KCnYfsdl5xGHb/ggDGYFSYFkQieiqv21BfVJxyRqPq893Wdw+Vjl/1O8vi67+91l6AVD43K1vj+h9KHYU69+HVfK1wl3qFNaCAGthgLVAYi0IEB3yrL8/g8FgmBbCir4Q4nWl1KVj3WVam3ENBoOhWpD9AnnY1h9HQlHfP8rEXWKvUWMJ+iaJaCvYQQJEq8RqlYjU5AooXd0Wz74T5aVtETI5vbgIgjAxxwfb0lX7C1Z6rF/mU58cez9v11vctzBK3tLrkDywZijgji6PRl+hUPxi4X34wsfFo8lt5Z58PSSPAT6D/ZeR8I6GW1Okj59DUu1FiBzz7AFu676Wn7Q/i4vLtvotrG04nw0DG/nUQZd3G2wemh9h0BYEwFOtDocSFr912CUVCu26hGLjOT4bz/FR1+Q4eNzm3f0O7+6LcKzXGhb9rid48s0oT2+JsmJBwPsucLlktUcsOvbzp6M7JcyXjNbiKgDVZ6FOWshubbVSJ0OrVba0vE/xKoAnCPodgp3O8BUA4ShEh674W4sk1pJALwBMy5nBYKhCjNA3GAyzHpURyMMW8pBNcEgL+xGiPqzQo0JBHzCi+iuaJHaHRCwIsDoCLeZbZVnEnVLw9l6HJ16PsvOwfkuWSgt719X3WbXQ57JzPc5b4ZGMnWFbwONtDo+26+24gFKKO456XNoXDLtV3mp6la74YSQBSknuOPxRGhd9e/iJGBi4mIT6VXG7XoTBwfU0NLwJwmejFOzpvYwtza/g4vL4vF+wenAdURXj/IGAFemABxZF2ZmyyQA7kxZ/uyLGZw+6zHNHLk6EgGXzApbNC7hlU57Obos3d0d4Y1eEviGLfF7Hc+46bLO3K8H9T8e56jyXD2x0aW0c/4JK2CBaJbSOXAQoBQwJ5EkLddJGnrCQR23UMQuVK7ECCbT4dwTqkF4gFqr/wgYxP8BaEmAvCbAWBYj50jT/GgyGGccIfYPBMKtQAdp6s99GHgo/ukcprtA3r3yK1hsAR2G1a0FvL5CIeQFWe6AHPJWZvAsvbI3y1JYox3v18QUBuGH2fUu95IMbXS5b69E4jisEEvjJgggvN2nrTA5o8CS/dcilI198fM7K8HTHQ4Aij8vl3dewWHhYwkMR4LtNeF4zozM8s5nlNDS+BfgkEnu4uuvT7G54jwG7nz6nhxfanuTaEzcDUBfAJw+6PNvm8GR7hBxwPCL4xxUxfvegy/Ls2DYcIWBRm2RRW55bNuXZ02XzyvYob+2JkM3q73ue4NHXYjz5ZoyN53h88GKXlQvPlkd6eoQA6hV2fQArittRCu37P2Yhj4f9GcdsVK91ivhXDogD+rXmF8R/VGEtlFiLA6xlPtbyAGsCCxODwWAoB0boGwyGmkZlBMF+G3mwKO6VV2LFKLXelIh6ES3xXy/WCSyitfJV2JwLv34rymOvxRjKav/8cPVewXkrPK46z2X1omDcSTC+gO8vivJuvTUs8pelAz5+xCU5SgM/1/4EaTuNj0+dX8emk9eQaH4+/G5AJrNC3yz0b4Wfspml+raAWPwwcSRXHbueRxf+DA+Xl1p/zca+TTR5raDvxjUnfeblJD9eFCVrCfot+OayKL99yOXc9Jk995YFqxcFrF6U5c4rc7y+K8JL26Ic69VV/ogDr26P8MbOCGsW+9xyeZ5zl4z/OTsbQoBokdAisdf5w19XWbTt56hNcCS8OtRtDT9dw5V/VxDssQn22fCc9hpZzRJrWYC1LMBe7iMWmKq/wWCoLEboGwyGmkEptMd6v63F/QEHeXwMC05QYsEJsx+tjlDQL9bifjpEfSk5F556M8rjr8dI58QIe048qrj2Qpf3ne/SVDexqq8v4LuLo2yrs5DoVJ0L+n0+3OXhjNrUkD3I680vopC4uNx49MNEVIREYi8q7DLOZpcDIFQxvF9IiZQJ8vl5xGKdIALiiQOs79/IO82vcyRxkKzI8ULb09zSdfeIfZ47JPnMgTzfXxpjwBYMCfiPJVE+fdhl3dDZG2xBe/rff4HLNee7bD/k8MzbUXYcdvAyunH3vQMOOw87rFwQcPPmPOet8CsWlykSYC8NYGkwfAJVWZBHbX0lqbPEGlZ4/sMJwPKE7g9gi/Z8iZjSHv/lAfYyXfkX8coct8FgmJsYoW8wGKoWpUCdsAj22si9DsEeBzU4jmp9k8ReGnqmFwWIjgAxQ+922Tw8+WaMJ96IkikIfE8L/OZ6yW2bXC5b6xKbhN8/AL43SuRf2eNx0zH/1AFUwMutz+ALHx+febmFrBncgBB5YvHDFOKEspllp/9ZMsuJxbrQ9p29ZNJrufr4B/nRsv/Ex2NL08tcfeJ6GvymEY9bmFN8dl+e7yyL0R0RpAX855Iov3Pw7JX9UoSAdUt91i316ey2ePadGK/tjJDJasG/87DN3q4kqxYG3HV1jtWLJ2/pmQgiAfaKALvU+jMkdHLTEZvgYCj+MyW/FQdd9d/hEOxy8ML8f2txgL3Sx14VYC03wt9gMEwNI/QNBkPVMELY73EI9o4h7IMSYV+o1s8PsJb6Wtwvro788yCAZ96O8ssXSyr4JQL/I1fnuXi1hzPJqEYF3LcwwtYSkX91t8cNx8cW+Vk7wxthNd/D44oTH0AgSCT2I1AoAtzcPKRMhjsose4M23eW09TyMhCQSOwBYFFmGQuzSziUOEAelxfbnubGo3edsv8WT/GZA3n+c1mMkxFBBi32v3Dg9J79M7GwVfIb12b50CU5nn4rxivvRchmBZYFOw7ZfP2+FOev9LnrqhyLxhHNWW5EncJe7WOv9olQMo/hkENwWFvNRlT9bXTVP7Sheb9GC/9FAfYqH3tlKPwr0C9iMBhmL0boGwyGGWNY2O8JK/anE/YewzYcEVfYK8IGxyqMNlQKtux2+OlzcY6HUZGeD24eWhokN16d5+I13ojM+8nwi3kR3mi0xyXyAV5peRbXcvHxact3sGroXAASyX3hPQIymeUjf5AQobRQzuUWoZSNEAGR6Alsu58gaGTTiWs4svR7+Hi82fQyV524nrqgdCywpslTfGZ/nn9fHqMnom08/7Y0ylf255mfn9zirKVe8ZGrc1x/UZ6n34rx4lYt+G0btuxyeHdfHZvWedxxRW5CKT3lRtggFkisBS7OJv01NSC06D/kIA/YOu0nHz7AAiIM952MEP4rfayV+rOp+BsMhjNhhL7BYJhW1KAg2O0Q7LIJdjkjYy5PJ+xXhcJmma8HFlVpA+O+LpsfPxNj9xFnuMk2n4emOsk9YQXfKsOxv9Bs82xLMV3n0l7/jCLfFx5vNL8ESHw8Lj95LSK8dzx+ABV6oLLZFWfcr1IOuewiEol9oU//IOmh81mWXsW83EK64ofJiSxvNr/E+05+aMxtNPqKTx/M8+3lMfptwYAF/74kyh/sy1M3BadNY0px55U53nd+nkdfi/N6iaXnhXcjvL7D4fpLXG7ZlD9tDv90IxoUznof1utmX5VlWPQH+x1k1+mFP8/or9lLA6xzfOw1euFrhnkZDIZSjNA3GAwVRbkg9xWFvewqUSJjWHFEXGGf42OtqH5hX6B/SPCjZ+K8ul1fWvADLfBjEcUdV+S5+nx30had0exMWfxsfmRY5K8b9Ln9qHdakQ/wXsPbZOw0PgF1XiNrBjaE3/GJxo4P3y+fWzh8W5ROTS+5ncstIpE4AATEYkdJD52PQHBJ95U8uOhH+OhFxZUnr8M+ZWyVptVVfOqAruxnLcHxiOA7oY1ndAPxRGmpV3z8A1muuSDPw6/G2brfIZMBLyJ46OUYL2+LcM/7c1yypnINu5NFJMBeo0V7hLwW/odLhH/nqcK/kOzjPR5DxJVeEIeWIdEuq+5nNBgM04sR+gaDoawoBfKIhdylmwzlfhvlh2pDURT2nv63iIUV+xVh5GBH7YgTKXVU5s+ej5FzBYHUAl8peN95LjdcmicZL59d5ERU8L3FUSR62u38nOSeIx5nWwe93vwioPDw2dx3GVb4iGj0BAI5nJ8vZYkP5DRC3813UPgFRaOdw18/Z3AtqaBuOFd/V/1W1g5ecNpjmp9X3H3E5d4lMVxgd8LiJwsifLTzzIuW8bKwVfK7N2XY22Xzq5fj7Ouy8T3wfYtv/SrJM2/5fPy6HAvbpt+/P15EghKff4nwP2gT7B1V8S9Eer7jEGzTp3bRJLHDar99ToCYYKKTwWCofYzQNxgMU0YNCYKdjk4Q2eGMTBcpFfYS7TNe4mOdE+Cs9BELg6qv2I/F/qM2//VEnIPHbJTSg65cFy5Y6XH7FXnaGssrIDMWfHtJlKylJ94mfMUnD7lEzqLdjsYPcyRxEInEUhbn9146/D2doAMgyefnjes48rni/WKxTgrh+rZyOK/3Yl5u+zU+Pq83v3hGoQ86evODxz0e69BDtV5utOnIK67t9s/4uImwckHAV+9M8/quCL98Kc5AWuB5sO2Aw3//Xh3XbnS548oc8Sqx85yJEcL/+nxxhkQhkaqvpLnXATwLvyeK/1qY478owF7rY5/rYy2tzb87g8EwMYzQNxgME0YpkIdtgve0sJeH7aLAKPXZh3pNtIWVxVW+zgqvAVF1OjI5eOD5OM++HR1utM3noa1Bcs9NWdZUINJRAf+1OMqJqNAXQpTitw7lafDPXqF9vfklADw81gycRzJIDX8vGjsa3pLk8/NHPE7IwkJFjbDx+H4jMohh2RksO4Pj9OOHcZrn917CK23PEuCzN7WTk9HjtLkdZzy+K7t9TsYEbzQ65IBfdTgsyMkJxW6eDSHg0jUeG5Z7PP56jGffiZHNgufB469FeXOXwyc/mOO8FeVbYEwHIln0+CsFqsfSNrl9WvyrbLjgLuT4H7CRh228J2KIhNKV/rW64l8NSVUGg6H8GKFvMBjGhUqPqtqnz2DHSSns9T7WKl9X7WeJiHhrj8P3H08wkBZICbk8WChuvizPBy4qnw9/NE+3OuxIWQToav7HOl0W5s7+nHrCZVvDFhSSgICLejeN+H4sdjRsxFW4+QWjHl1q3SkV3YJ8fl7YkCuJxrqGhX6938iqwXPZVf8ePj5vN73GdcdvOeMxCuDWLo+eiMW+pEUOuHdRhD/cm6exzLo7EYXbr8hz2bkeD7wQZ+dhh3QG/MDi73+aZPM6j49dm6MuUXuvVyFAtEqsVhfnUv0rU53a4hPss5EHHZQb3jnM8PffjOC/pftKrMUl1f4lptpvMMwWjNA3GAxjMly13+4gdzoEB0dV7f2SJtpw0I+1xsNZ7SPm1Y7Pfjyks4IfPh3nlfd0E6zn6Sr+2qU+91yTpbWhcsLwQELwcIdO8ckD7+v2OH9gfNXuHfVbcS2XgIBmt5UF2SUl35UlFX3Gbd0BcPPzSCT2A5JY7CiZ9Lrh723ou4g99Tvw8Xmn8TWuPX7TcE/A6XAUfOxwnn9eGafPEfTagnsXRvn8Qfes/QeTYX6L5Iu3Znhrj8MDLyToHxL4Pry4NcK2/Q6/8YEsl55bfc26E0FYIMJJ0JFrQOVA7nd04tXuMO0qh15plcZ4Ph5DJMNq/7n6w3j7DYbaxQh9g8EwjPIg2OUQbHUI3oughkqq9jK045RW7df62Gs87BWzd5BPaRW/0GybjCo+cWOWC1ZWVgxmLPj+omLz7eJswPXHx1/mfrfpdUDh43Ne/0XDkZoAkUgPlvB0td+vIyix9AAgSyv6I7+Vz3doJUkwoiEXYNnQOSSCJIP2AH1OHweTe1ieWX3WY00F8JEjLt9Zpptzd6QsnmpzuP5kZew0QsDGc3xWLx7i5y/GeX1HhEwGAl/wrw8meXW7z29+MEvTLBG5Io7+e10b2nyOWwR7wob50mp/2NTrvxHB3xIZXsQ76z3sdT5iwexaxBsMsx0j9A2GOY7KCIJtOqkj2Omg3PAsPtprX1q1P8dHzJ/dJ/xTqvgu5F24ZI3HR67OlTVNZywU8KOFUXoj2pfvSMXHjninCaw8lSFngL2pXcjwv3X9F474/ohG3NyZq/lCjbyCUFr91w25RWxs1gxs4M3ml/HxeLvp9XEJfYAVGcn7T3o83aabcx9ud1iRkazMVC4ZJxVXfOIDWS5a5fHjZ+N0D1h4Pry5y2FPZx2f/GCWi9fUlnf/bAgBYp7EmucSudLVaT6Fav+uiB5aN6ra7x604RGwmiX2Oh97nbbmCaMiDIaqxvyJGgxzENkjCN6NaHG/zylWbEcl5Iikwt4QVu1XBoga9C5PhvcO2Hz74eRwFT+Xg1RM8Vu3ZNmwfHpE30vNNu/UF335n+h0afLG//xvbdiCQhEQsDiznAavacT3i7ad4JRGXM3p9+W5LSjpIKwA2xnEtocIgrrh76/v28hbza/i4/Ne/dvcJD5MVMXGddzXnPDZl7SH/fo/WBThj/bmSZa/x3kEa5f6/MlHh3jo1TjPvxMlk4UgEPzLL5Ncvt7j4x/Ikhjfj1BziATD4l2pHOpYWO3f7SAPjPT2S89CdkfxXojqaNw1+nH2WmPxMRiqESP0DYY5QCHbPtiqxf3w0KpCI22haq/ChJy1Hs5aH7EomNVV+9H4ATzwXIzHX9eKzg29+Jeu8fjwNFTxC5yMCn4xT19JcIHNvR7rBydW1X638U1KbTujicW6UKGYP7URF8QI687on9vCzXcQix8CERCNdZEtqdp35BbQ7LZyMnqcnJVlZ/02zhs49RjGwkJbeP5lZYxBW3DCETwwP8JvHvHG9fipEI/Ch6/KccEKj3ufTtDdr6v7L7wbYfdhm8/clGV1BVKVqgkhQMyXWPNdIle5qGxhkrWD3DUyyUe5ArUlgv+OtvjYywLsgsWnhuZhGAyzGSP0DYZZivJB7rMJtkbwt4UZ23BaS469ztOJG63VO0Cokhztsfi3BxMcOm4PJ+rEI9NbxQe99rp/QQRP6AsrbXnJjccmtv/eSDdH40fC7Hyb1QPrT7lPJHoi3JvCddvPflCjyLvtxOKHAUk0cpIsRaEvEKztv4AX2p/Ex2d7w9vjFvoAjb7ijs7iMK3XG2wu7A/YMDQ9r81VCwP++J4hHng+Mezd7wosvnF/ihsuy3P7FfmKJSxVGyKhcM73cM73UAF6WNeuiE7e6rH0GjC0+BSm9PIgWC0Se72Pvd7DWhEg5sjzZTBUG0boGwyzCJVDx19ujRBsd1C5sKQ2emiVrbBXheJ+9dy+5K4UPPtOhPufjuP5Qufi5+DcpT6/eV2W+uT0PjcvNNvsTWrLjg/c03n2oVij2d7wDgA+PsvTq4iVTrwFLCuHYw+hUCjl4HmNp26kpIovTqnog+e2ohWexImcOOX7awbW82L7UwQE7Krbhivy47bvAKwdklzYH7Cl0SYP/GhhhBV7Km/hKZCIwic+kGXdUo+fPJtgMKOTeR56OcaOgw6fuzVDW+Pc+rsRNtgrAuwVAepDoE5aunl/ZwR50B5p8fEt5Mko3nNRndm/zsfe4OnM/llqgTIYqhEj9A2GGkf2h820WyPIPQ6qIISCUSk5CYV1gY+z1sNaWdtDq8pFJgffeSzBll0RlNI2HSkVd12d533nu9NuPeiOCB7qiAxHab7/pMeCceTlj0YLfe3PXzOw4ZTvRyLd4S2J5zbDGCGWww24Slf9R+O6LRSeoGj05Cnfb3bbaM23czx2lLxw2VO3g3VnmZQ7mhuPueypi9Nv68jNn8+L8PHOylt4Stm4ymfF/CF++HSC7YccMhnYfdjmz75Xx6dvyHLR6tnVqDtehADRLrHaw4betNC+/p0OcnfJdOxCis9rEfw3IghHYa0OcDaEFp9ZMmPDYKhWjNA3GGoMpdDNclsd/K0RPZUWin57l+JE2qYwIWOtZ4bgjOLAMYtv/TLJyX5ruOG2ozHg0zdmWdAy/fYlBdy/MELe0r789rzk/ZOIluyL9NAZP4REIhCsGlx7yn0iw8JchpX5sx3c6Sr6he2dWtEHWD2wnpPtxwnwea/h7QkL/WQAt5VYeF5ttLlwIGDdNFl4CjSmFJ+/JcOz70T51ctxsjnwA8E//yLJBza63PP+3Jyx8pwOkVI4F3g4F3jaNliw+GwPbYM5tK8/IlDvOgTvOUVf/wYPe4OP1TY3bYMGQyUxQt9gqAGU1BF3wVaHYFsE2X0avz1gLQyw1vo453qmIW4MClad+56K4wdiuOH2qg0ud16VIzJD74ovNdvsKbHsfKTTw5lEsXNH/buAtu0sTa8kLk8dcBCJFIW+ezqhX7rvMYS+7zegpK2Td+w0lpVByuSI+5wzuJ6X2n+NDO07vvBwVGRCP8/aIcn5AwFvN4QWngUR/mRPnuQ0a0Ih4JoLXFbMD/ju4wlO9ltICU++EWVfl83nbs3Q3mSq0wDCAXtlgL0yQN0QFiZ2atEvu2xUnpG+/v02/Aqs+YFO+drgYS0y710GQzkwQt9gqFKUC8HOMN/+vQgqXeK3L2QuSsACa4WPs9bHWuNhzTHf8ETIu/D9JxI6G1/phltbKD5zY5YLV82cBWPAgV+VWHbe1+2xKDc5JVu07fisHTh/zPtEoyeHE3c8r23sDamz7V/geS1Eo0dBSCKRbvL5kUK/Nd9Ok9tKd5i+s6duB+cOnjfBnwhuPuqyNxVnwBZ0O9redPfR6bXwFFjSEfCHdw9x/zMJ3t4TIZ2BPUeKVp7Zlrk/VYopPnki1+SRvQK5M4K/vSS6U6B9/YdtZJeN90QM0SRxCqLfNPMaDJPGCH2DoYpQQ4LgPQd/axhl543dTCuiCmu9zq62V3mzdiptOenqtvjmL5N0dRetOvObA37npixtjTNrGfjlPG3Z8YAWV/KBE5MTi2l7iCOJg0gknMa2AwXrTij0x2HdGasZF8B1W4lGjwGSSPQk+fySkY9DsHpgHb1tJ/Hx2VX33qSEfjKAW7s87lscxUVf/djU57NkEv0L5SAZg09/MMvzCwJ+8aK28gRSZ+7feFmeu67KYxmb3JhYzQprs4uzOfT173Z0gECpr98BPAvv2Sje86aZ12CYCkboGwwzjDxphc20DsF+p5B4OFLcKxD1EvsCLe6tZWYi5UR4Y6fDfz6aIO/qVJ1cDjavdbn7mpmz6hTYnbR4s8FGon/Vt3dNPGWnwJ667cNDshZml5IIkmPcSxKJ9Az/y3Wbx9zWCHF/GqHvuS0UknfGasgFWDm0hlfbntP2nfqtqK57EEzck7FuMGD1UMCOOpsc8NMFEb66zx2jjXh6EAKuPs9l2Tyf7z2e5ESfRRDAw6/EOHTc5nO3ZEnNkQFzk0WkFM6FHs6FHsoFuVcn+AQ7nOIVTItTm3nXlDTzzuHEMINhPBipYDBMM0rpS9TB1jAp51goVcZqpm2X2Os9nHN9xIK5NbyqHEgJP38hxsOvxLQtJg9KKn7zuhyXrZ0Z60cpvoAHFmjPeh44b8BnVWbywmVX/XsUhmStGjx3zPs4kV4EEoUk8OpQp4u8HJfQbx1O3omMEbEJMD+7mESQZNAeYMDupyt+mIW5JWPe90wI4OajHvtW2eQF7I9bvNxsc0XvzA6wWtIu+dpHhvjBk0m2HtCpPO/udfgf30/xxdszLJ1nGkzHg4iir1Cu9XVe/yF72Nevekc1876jLY0IsJf72te/3jTzGgxjYYS+wTANKB/kHm3JCd5zUP1nGF61JBwpf66PNQPpL7OFTA6+/XCSd/Y6SKWr+E0pyWdvycxIqs5YPNvicCwq8AFbKm6e4GCsUnzhsy+1E4lEoU5r24mOaMRtmfT+AFyv8HhVkuQzEoFgxdAa3m18g4CAnfVbJyX0AVo8xdXdHk+3RcgDD3Y4nD8QUDfDw2qTMfidGzM8+nqMx9+IkclCl7T4yx+m+OQHc1y+fuYXlbWEsMFeHmAvD/P6z9TMu9sh2OfAL00zr8EwFkboGwwVQmUh2B7RtpwdJcOrJOCH4j4AHIW9KhT3q31EylyKnipd3Rb/9PMkx3u1nSKbgzWLfT59Q4Zklfh7+xx4vN0ZbsC9+YRHgz/53/3hxD7yVh6JpNFrpsUdu8l2ZLTmaRpxoVjFV6f36Hslth9tB/IZ67SyYnA12xq3EOCzq24b1564aRw/0dhcddLnrUaHkxHBoCV4sCPCx7pmXkhbFtx0WZ4l7QE/eCpBOiuQgeDbDyU4cMzmo+/PGd/+JBhXMy9AZIxm3vUlzbxG7RjmKOalbzCUEdkn9FTabQ7BHkeLeji1mTahsC/wdFLOCjO8qpy8tcfh2w8lyLnF6MzrLspz6+bqapD8+fwortAviY68ZHPP1MrS2rajYzVXDq05rQ8+Mpy4o3BPl7jD+Dz6SkXxvXocpw+ETyTSN2aKz7L0KiwsfOBo/AgDTh8NftM4f7JRx690Cs9/hdn6LzfZbO7zWZatjgXyhuU+X/twmv98LEnnSQuZgydej3Ksx+Jzt2ZIxs++DcPpOaWZd5ce0jVmM+/zUbwXooj4qGZe8zswzCGM0DcYpoBSoLosgm0RnZRzpCQDbvRk2iaJfbFuILMWm+FV5UYpeOTVKA88Fx/hx//tD2XZWGXTS/ckLd6pt4oNuEddppoeuLtuOyCRSM4ZXHfa+0Uj3RQ6vs+cuKNOc3sknteihX5o3xlL6EdljMXp5exP7cbHZ3f9di7uvfzMP9AZWDMkWTsU8F6djQv8bH6E39/nTqLFtzK0N0m+eucQP/y1juDMZOGdvQ5//oM6vnJXho7m6rCO1ToipXA2ejgbRzXzbh81mdcT+K9H8N8Mm3nP0UO6nPVmMq9h9mOEvsEwQZQEuc/WlfutDrJ3VDNtQdwD1oIAa72u3Is24xmtFH4A3388zotbo8N+/Mak9uMvbK0uUaXQcZqgRyGcP+CzfAoNuAB9kW56oicJUERUhMWZZae9bzFxR+B5YyfuDB9o4cYZDs9zW0gk9jE6zWc0y4dWcyC1h4CAvakdUxL6ADce9dhd0pj7VoPNxoEZNuuXEI/qCM5HmyWPva59+4dPWPyvH6T4wm0Z1i6tnmOdDYxo5r0tbObdUdLMq9DNvFGB2uYQbHdwfwL20pLJvO3V9V5hMJQDI/QNhnGgcuhLxNsiupm2UC1SFP32PmCDtUz77Z1zPUSDqRZVmnRW8C+/SLDzsDOcj7+8w+d3b8mSilff8/9Go83huCBA22NunEIDboE9dTsBCMJpuLYa+61dCA/bTmvrjhL4fv3pN1pi1xFnGJ7leY0UIjYdp/e091s+dA7PzBMoFHtTOwgIsKdwHaPZU2zu8Xm+1cEFftXhsGEwmHQ0aSUQAm68NM+85oAfPp0glxNIKfi7H6f42AdyXLvRPftGDBNGWGAvC7CXnaaZN0zwIQLBXpvggA0PgtUhi6J/iUk5M8wOjNA3GE6D7NfDq4JtEeRuG+WXNNMWYjADPbzKXutjr/OwVxn/53RyvNfiHx9IcqzXwvd10+1l53p87NosThVO0nQFPNyh33bzwDXdPo1TaMAtsC+1E8L8/OXp1ae9nxMpCHEZCvTT+8eEKqnkn8ajD+B7TWHEpsKJdJ/2fs1uK3V+A31OD1krS1fiEIuzy097//HwvpMeW5psBmzBiYjg2RaH67qry6YFsHGVT2t9hv94NEHvoIWU8IMn4hztsfjYtaZJt5Kc0szbV9LMu98ZkeAjOy3ksRjeUzFEg8Re7+Ns8LFWmbklhtrFvHQNhpBhv/17Dv7WCPLwKL99gPZaSD28yjlPi3trqUl0mAl2HrL5l18kSeeKTbe3bs5x/cVu1Vbinm116HMEHpAIFO8rgygNCNif2j0cq7li6JzT3jcyXHFX+F7jWbY8vgWI5zWFtwSRSN9p7ycQLBtaxUBTHwE+e+p2TFnoxyW8/4TPg/MjuMATbQ6b+vwZj9sciyUdAX/w4TT/8WiSA0dtMll48o0oPQMWn70lQ8w05E8LVpPC2uTibHJRmZLJvDtHNfP6Fv6LUfyXwmbec8Nm3nN9M4ncUFMYeWKY06igxG+/rcRvD6c001rzAqy1Ps5aDzHf+O1nkhe3Rvje4wmCAHJh0+1nbsxy4arqq+YWGLThqVYdp+kCN57wiJXBEtyZODgcq1nvNdJ0hgbbkRX9M/jzYVQv7pmacYsLBm3dUXCatthlQ6vY2vQmAT57Uzt4/4kbz3wM4+DSXp9XWhyORwVDFjzaHuEjR2c+bnMsGlOK37s9zQ9/neDNXbpJ981dDt+4P8VX7srQYKJ1pxWRVDgXeDgXeCgP5D4Hf4eD3BFBDY1q5n0zgv9WBGGDtSoU/et9rEbzOzNUN0boG+YcKouOY9saNmrlSvz2peJehH779T72Gg+rybyhzzRKwc+eDyfdKi3yExHF52/JsGReFZZxS3ikI0LeKsZpXlqmia576nYA2p+/Ir36tLGaAJFIaUX/TI24I1/rp8vR13eNIYMEljWEED62PUAQjH21YElmRbh3OJI4SNbOkAiSpz+OcWABNxzTcZse8GKzzVU9PvPc6vx7jTjwyeuyNNdJntqim3R3H7H58x+k+OqHMyyosubxuYKIgL3Gx17jo27N6Uz+HQ7+9giqp6SZNwLqPX0FgJ+CtTjQ1s31ZkiXoToxQt8wJ5A9guC9sGq/19E2HDhlMq2IKv1mX/Dbm0u0VYMfwHceTfDKe5HhZJ2OxoDP35ahua46RV2BY1HBK002Ci30bzrmnsEdPzH21e0CFBLJiqHT+/MBnEhfmKEPnj9+oX82G4/nNRKLDQGKSKTvtEI/ESSZn13EkcQhfHz2pXaxfuDCM257PKwekqxMS3anLPLAQ/MifOZQ9Ta6CgG3bs7TUi/5yXMJcjk95O0v7k3x5TsyrFlS3YvW2Y6wwjSepQHOB/OoE5ZO8NmhI5RH+PoP2MhDNt7joa9/bTj88BwfUSXD+QxzGyP0DbMSJUHutwm26xg1eXSU3750eFWDxDk/9NsvMX77aiTnwj//PMn2gzpZJ5uFcxf7/PaNGeI14G1+pCMybNlZmQ5YnS7PwiRnZeiKH0YiAcGS9Ioz3l/HX4YZ+mf16Jcgzyb0m4jFOoEAJ9IDudPHey5Nr6IrcZiAgAPJPWUR+gL40DGXfSvj+MA7dRYHE4KlVTJE63Rcsd6juU7xvSf0JN1eKfjbH6f49I1ZNq+rTvvRXEMIEB0SqyNP5H15ZH/YzLvDQe4rmcwbDunyX4rivxIt5vWv87DX+ljN1f1aNMxejKQxzBpUWgwL+2Cng8qOsuQUxL0K8+3P9XHWeYgOc7m1mukfEvz9T5McPmETBJDJwpXrXe6+pjbSSg7FxfBwLB+48Xj5BNzB5D5UmLbTkVtIXJ7pEpQi4vSFt4VOyzntXQv2kVCcnMG6A2HyThixeaaGXICl6RW80vZMmKe/84z3nQgL8ooNAwHvNOghWg+1R/jiweqt6hdYu9TnS7en+feHU/QNCoYy8O8PJugeENy8qXoby+cqVqPCuszFuczVsct7HYJdEeROB5Uu8fVHBMFWfT4Cfc6x1+ucf2upie40TB9G6BtqFqVAdVqhuI8QHLSLDoNRlhxshbVcV1ecNb7Jt68RjvZY/P1PknQPWHi+tuvcvCnHhy6pHQH0SEdxONb6QZ+FufK99g6k9gA6eWdZeuUZ72vbaYTwtckniCHl+HNgxVmtO03FiE3n9EOzABZkF2MrB1/4dEdPMOD00eA3jftYzsQHTnhsa7DxgB0pi11Ji9WZ6ve8L26T/P5dQ/z7Q0mOnLTJ5uCB5+L0DFj85vW1saCdi4g4OOt9nPW+vop8xEbu0oUmecwu9qVH0J7/ThvviRiiTmGv1VPS7dUmktlQWYzQN9QUKh8OrtquI9FU/6iUnNGWnEIFZZmPqAGLh6HInk6b//1AMT7TdeET12XZtLZ2LA17khY7UhYBEAAfPF7eVCAt9CUSydKzCH1neGqtKonEHBsxMYt+iQ1InHE6LoCtHBZllrI/tVvbd1J7OL//kjPvYJy0uoqL+nxea9JDtB6a53DOPvcM7cnVQ3Od4st3pPnOY0l2HnbIZuGZt6IMZgWfuyVLxJytqxphgb0kwF4SELkuj+wVyN0R/J0Ocr9drPY76BSfV6L4r0XBAnu5r+M7z/URC8wVZkN5MW8dhqpGKVDHLZ2Ss91B7hs1uEqOSslZFGCdG1btjSWnZnlrj8O//iqB5wvyLiAVX7g1y9ql1RufORpFcTiWC2zs92kvYxJM2h7iWKwLicLCYmFm6RnvX7TtyDPbdgDkqCr4uKw7oIdmnX46boHFmeUcSO0hwGd/anfZhD7ANSd83mp0yAvYH7fYWm9x3mD1V/UBkjH43M0ZfvRMgld36PjNN3ZG+Luc4Mt3ZEiaym/NYDWXWHzyOroz2OUQ7IygBsMTU2E67y6HYK8DD+kClb0mFP5rTCCEYeoYoW+oOvQQE1sPMdnloPpGVe1LB1cl1HAlxD7HRySMJafWeebtCD94IoFUkM9B1FF88fbqj88czfY6i/0JXc0HxfUnyrtIOZjcC2jbzvzsYqLqzJesihX9cWTon8JZhL5fD0qAENj2EEJ4KBU57f2XpJcj2rXVZ19yFwp1xljQidDoKy7r9XmhRVf1H2l3WD9YvpSjSuPY8BvXZqlLSp7eEiOTgff266z93/9whsYqT5gynIqIodN41voolUN12bp4tctBdoYpPgAR9KCuQrVfgL0swD7XwzrXN/GdhklhhL5hxlES5EH9xid3OgSHRnntZYnXvjC4Ksw7thYFiFo5gxvOiFLw4MsxfvGCzsjP5qApJfnSHWnaaqynQgEPlXjzL+v1afLK+zPsT+0GxufPB4iURGv6Z4rWBE4R9mep6IOF5zcScbpBSJxIL57bcdp7z8suIiKj+JZPX6SXvkgPzd7pB31NlKtPerze5JC14HDM4s1Gm0v6a2ehKATctjlPXVzxy5fiZHOwr8vmL+5N8bW7M3Q018YVCsOpCAFiYYC1MCBybR41JAj2OQS7HeTukobeQrV/j02w34ZH0N7+8Nxnr/ERZtFnGAdG6BtmBNkjisJ+d8nQKjjVax9V2Kt8rNW6am8mEc4+lIL7fx3nyTeiwxn5C1sCvnBbhroavErzbr1FV0wQAJZSXFvmaj7AgdTuMD1fsiy96qz315aaMFrTbTrjfUVpnKY688CsAr7XSMTR8Z2RSM8Zhb6FxaLMMvbW7SDA50BqN8195RP6qQCu7PF4ui2CBzze5nBRf1AzVf0C117oUpdQ3P/rYtb+X/4wxVc/nGbZPCP2ZwOiTuGc7+Gc76EkqE47TPIpyeyHorf/tQj+G7qIYC0IsFf72KsDrBWmD80wNkboG6YFlREEe23knjCR4ETJKXd0Qo4I4y8Lwn5hgLBPs2FDzSMlfPexOC9ujSKlruSfs9Dnd2/OEDu9+6NqUcBj7cVq/pU9PnVlLiYP2YN0R08iUdjKYX520VkfMyJa0x9nhr465cZp8bwmEgkAieMMnPX+izPL2Fe3M8zT38fGvs3jO6Zxcnm3z8stDkOW4GhU1FxVv8ClazxSccV3H0uQzQtO9gm+cV+KL9+ZYe3S2vt5DKdHWCAWB1iLAyLX5HVkdGm1f6ik2u+APBQm+TyDzu1fqoW/tSYwV7sNwxihb6gIw81He2z9JtVZYscZI9d+eKLgOT72ysB47ecIng//+mCCt3ZHhgdhXbDS41MfzOLU6OJu66hq/tXd5a/mH07uB0ASMD+3COcMfnjCe9rOAAxbd+rPcv+JWnfA9+opZOk7Tv9Z778oswyBQKE4mNxz1vtPlLiEzd0+T7dHcKndqj7AuqU+X7g1w78/nGQwI+hXgn/4aZLfuTnLJWtqp0HdMDFESuGc5+Gc5+lgiqMWwZ4wt/+wXRzWVcjtLzT1PhL2rxWuhK8OEK3G3z9XMULfUBaUF/rs9+jKQ3DQ1pV60JpBjrTj4CisZeFlx1U+os28Cc01Rky7DbTI37TW5WPX1m5uuAIeaxtZzU9VoOh6KLkP0P78JenlZ72/4wyiW18VgZ9CqTO/9YtTUnfOfky+30jhj9h2zp6805FdMJyn3xvpYdDpp368VxrGyeYen5daI6QtOBoVbGm0ubgGq/oAy+cH/N4daf71oSQ9AxaDacG3fpkkd0OWq86rnchZw+QQAsQCibXAJXJ1mORz0CHY5yD32sXcfijafN6OwLv6/Ug0SuxVAfZKH2ulEf5zCSP0DZNCeeFlw32huD9go7xRPvsALewDtB1nYYC10tdvNIsDRA3aMgzlIZ3V0273H7XxQ5H/gY15br8iX9Mnn/fqLDrjxWr+VRWo5gMcSu6nkJ+/KLvsrPcvVthVWHmfGOPz6DcM346Mo6JvY7Mgu5iDyb0E+BxK7mf9wIUTPrYzkZBweejVd4HH2hw21mhVH2B+i+Qrd6b51oMpjnZbZLLwnUcS5FzB9RdX/xRgQ/kQMUJ/vn6PUYOCYL+u6Mu9NmrAKg7sctBpPr3WsL9fNErslYVzcmCKbbMYI/QN40JlQR5wCPbZyH0O8rBVzLMHChOBlI/22QNWR4C1MtCXD5eY6X8GTd+Q4O9+kqTzpD087fbWzTmuv7h2pt2OxWhv/hW95ffmA7giz7F4JzKMpFyQWXzWxxSFvhyfP1+N/sc4hL5fEPpqXNYd0PadQ8l9BAQcTO4tu9AHbd95sSVCJqzqv91gs3GgNqv6oAdr/d7tab71YJJDx/UU3R8+FSfvwc2bavtvyDB5RH1JU68CddLS9tl94fyZTPjCCCf1FoQ/b4bCv6FE+K8ywn82YYS+YUzUoBgW9cE+G9lljzzXjyHsRYvEWamtONbSAJEyPnvDSE70Cf7mRym6Bywt8vPw0WuyXDkLrAfb6ywOl1Tzrz5ZmWr+keRBJJKAgLb8POLy7BN1Rgj9ksr7aVGjrDtyPEK/briCaDuD6DeGM59iFmaWlPj09579uCZBoar/6zCB57F2hwsGareqD1CXUHzxtjTffjjFnk6bbBYeeC5ONi/4yPtq+6qYYeoIAaJdYrW7OJtcneZz1CY4YCMPhJN6xxL+fRZsCYV/ncJa6mOvCLCWhc295ip8TWKEviF8E7AIDtnIAzZyv4M8WXIaLHjsS604aGFvL9dvBPYyH1FjWeeG6eXICYu//UmKgbTA9cBz4dMfzHDR6tpvJhxdzd9coWo+jPTnL86c3bYD4ET6ixn6QdME9jaRv2mbIKjDtvtBBDjO4Fnz+hdkFw8PyjoW6yRnZYjL5AT2OT429/i8FFb1O2dBVR/CKbq3pPnPR5NsP+SQzcIjr8TIuYLfvD5nxL5hGGEVs/u5IhT+xyyCA44+3x8YJfxDj38wECHYFgp/R2EtlljLfN1ftzwwOf41ghH6cxA1KAgO2sjCx2EblS85KxSGVBWEvUR77OcFWMu1qLeWmD9yw/jZ12Xz9z9NkskJXBeCQPH5W7OsXVr7Ih9gV8riUEk1/30V8uYDHEzuAyQKOX6h7/RTsOCMp6I/2pM/Ho8+aJ++bet9OU7/WYV+VMZoz83naPwIAQGHkwc5Z2jtuPY1EZIBbO7xeCas6j/ZZnPhQFCmWbwzRywCv3Njhu8/keCdfREyWXh6S5S8J/jtG7LYNZpcZagswio29nJ5UfjLgw7Bfl31HyH8bcAROkVvn03hD8dqk7rav9zHXhIg5ksT6VmFGKE/y1EeyM4SUX/QRvaO+ksMKKbihNNnsRXWooKwD7AW+4jY9B+/ofbZddjmHx5IkncFeVeLxi/fnmHlwtquqJbyVKt+K3WBy/p86iuk833hcyRxABnW5xdNSOiH2/DHYd0ZzTiFvuc3ECtEbEb6IXf2xyzKLOVYvJOAgEPJfRUR+gCXh1X9wrTc7XUW64Zqf+hUxIHf+lCWHz4Nb+yMkM3Ci1sj5F34/G21G1NrmD5Khb+zmaLH/7BNcDgU/t1W8QKfjc7xP2ohj1vwelj1jyqshRJriS4GWoulSfepAozQn0UoD2SXjTyi/0DlERt1zNaV+QKl1Xqfog2nXmpBvzTQf6ALAoR5dRimyHsHbP7p50lcT5DLQ9RWfOn2NIvba19gFTgUF+xOWQTo8+DV3ZVbwByLd+ILnwBJo9dM3ThFe6nQ986aoc8Ywn78Ff2JZOmDXqy82fJy2JBb/jz9AskALunzeaHFwQWebHNYNzQ7kmpsCz7xgSyxiOLFbVGyGS36//EBwZduzxAzE1MNE6Do8Zc4F+n+KZUWyCPaARAccJCdVtEJUGr3GVX1FwmlNcUSPQjMWhwgGpQR/9OIkXI1isqHoj4U9LLT0jm6pfpJMnI4VUGJOEpPnl0SYC8Jm2yMv95QZt7Z6/Avv0jgBYJ8DmIRxVfvSjOvefaIfICnwtx8D7ig36fJq9zf0qGwYVXij9u2Y1k5LCuPQqJkBBmMwwM/WuiP80fy/YZilr7dN67HLMgsGb59JH4QX3jjGAA2OS7v9nklFPp7EhZ7kxYrM7Pj9SgEfOTqHLGo4uktMbI5eHevw9/9JMVX7kqTNKlnhikgUgp7jY+9xidCHuWHDb6HbR21fcRG9ZW4BcLpvfiCYLtDsNMZsS0r7BmwFkqshQGi3dh+KoUR+lWOkuEltKMW8qiN6tKfZY818uR7OlFP2DQbrqbtxT6iQyLM5VxDBXlzl8O/PpjED3R8Ziom+epdGdoaZ4eoKnA8Kni33iqEUFXUmw+F/HxFgGRxZvm4HqMn4gKocCLu2Utpk/bol1xhcCJ943pMKqijyW2lO3ocV3h0xQ+zJLtiXI+dKI2+4oI+nzeaClV9m5UHZ89rUgi4dVOeeAQefjVGJgs7Dtr89Y9S/OHdGVJm4rihTAgHRFih53L9NTUodAGy0ybotFGHS5p8YaT4HwjFf6HyH1GI+bK4AFggseYFiLOHihnOghH6VYJSoPoE6rg9LOpll4U6PiqvHkbabwofYaydaJbYC3WV3loQmD8Uw7TzyvYI//FwgkBqkd+QkHzlrjQt9bNPZDzd6qDQ1fxzhwLm5Sv3MyoUhxL7keFlu4WZpeN6XMTpG97CuKI1x9z5RKw7hf2Oz7oDsCizhJ7oCSQ+B1P7Kib0Aa7q9tnS5OAD21I2R2I+iyr4e5tuhIAPXpwnFlH87IU42Rzs67T5xv1J/vCeDPXJ2fOzGqoLUa+w6wtV/6KukZ02qtMmOGKjjp5G/HsCtV/3EZbWIkSjxOqQWPMk1vwAMU9idRhdMxGM0J9mlAvqhIU8YSFP2Pr2cQt10kK5Ywj60mhLn6I1R4DVFiDCy17Dot40zBpmkOffjfC9xxJICdkctNRJfu/ONE2zMKGpz4E3mmwkeq19TYVy8wt0R4+TtTNIJIkgSYvbNq7HTXhYFkzeo19a0R9O+jn7FYSFmaVsbdpCgM/BxF6u4rrxHeckaHMVGwYC3mmw8YCn2hw+daT25ziM5n3nu8QiivufSZDNwf6jNt+4P8Uf3ZOmwcw4MUwDQoBoVljNPmwYKf7VURt5TM/okV2WnuQ7/EB0w68NdFsEvRbBTkYuAJpC8d8uEW0Sqz3Qjb/Nxv8/GiP0K4DKguqxkL0WqtvSt09qMX9K4g2cKuiDkq8Bok5qH9v8AGt+yQvaDK8wVBFPb4ly75NxlNIiv70h4PfunL0VxGdbHQoJtEuzAUuzlbWAaNsOSAKWZlYN58+fDSdSEPoK35uk0B9nRV/KGEpGECJAWHksK4scRy5+IT1IoecESCRWBUdaXXXSY2uDjQ9sabC56YRPmzv7Xqeb1nrYFvzwaS32Dx6z+Pp9Kf7oo7Nz8W2ofgrin2Yfe12xOKLSAnk8dDMctVHHQ92UH1X9L1wBOGkR9FgE2xm5AHCUFv6thQVAmPzTJudsE7AR+hNEKSAHqt9C9VvIPoHqCcV8KOpHXJYafiDDYv4UQR8iEgprnkR0hIK+I8DqkAjjqzRUOY+/HuVHv44jlbbrzG8K+PKdGVLx2fnazdjwcpO27fjA+ytczQfCybEFf/74GnFBV9aLw7LGKfRHVfDFuH+NAt9vIBLJUcjSd92zC/1Gr5lkkGLA7idrZTgRO8q8/MLx7nTCLMgrVqUDdqZsXLQF656u2VfVB7hkjYdtKX7wVJJcDg4dD8X+PWlaTAiDoUoQKaWHb64oppYpCarXCl0QtnY/HLeQJ0elCZZeAfAE6ojuExhdKxCOQjQqRLNENEus5uJt0Sz192ZhQ7AR+iUoTzeTqLSlPw8ILej7LFR/eHtAjFxhllKowpdW5yUjqvNYoY++VSLag+HVptUqEbO08mmY3Tz4cpSfP18U+YtaAr54R5rkLLaRvdDskLd0Nb8jL1k9DXnsh5P7UeF/423EhVILDeP26J/SfKvG//N5XgORyAlA4UT6cd0FZ98fgkXpZQw1vIsM8/QrKfQB3nfSZ09KV/VfbbS58bhH/ewZ7TCCjef4WFaG7z+RJJfXU6q/fl+KP/5omtZGc94xVCfCAtEqoVViry2p/gclC4Ae/aFO2tpBMTRKnxWuAhQWAXkBJyy9OBgt5SywGsPKf/2oz4XbjQqStXVlYFYK/eGqe1ZATqByong7I1BpgRrSHxREffoMAh6KAr5UyBdEfEnCDQC2QjQr7GaJaAlXji0lq8ZZ+awb5hpKwS9fjPGrl2LDIn9Zu8/nb8sQn8W53XkBz7YUm3Cv6fYqPmF1yB6kL9KLROEoh/bc/HE/tpi6M4FhWVPQfsV9SJySfZ+NBdkl7GzYSoDkSOIgl/ZeNfmDGAdLM5KFOcmhuEVOwAstDjeemB2TmsfigpU+tpXhu48nyeehq9vir0Kx395kxL6hdhA2iDYJbZLRAYIqC6rPQnbb2mnRE/ZA9lqo9Kh36oLYDxcCwgJ5woKThZ0wZouRsIF6XZwVSYVI6Q8K/w6/Riq8TwyIqRnTfjMmOVVO4L/rlNhZxIjqtyp8LTTBKl/osZO+QLnolZkn9JnWE6g8WshnQ8E+nvetUuFe8u9hAV/inR9BRK/urIZwpdccVuSbJFaThLraWu0ZDBNFKfj5CzEeelmL/GwWVi3w+ewtGWKzvHfktSabjK0tO02e5Pz+ylfzOxMHAe3Pn5dbhH3K6e10qFBshxV9v26cDyt9Uyz999kJhiM8xz80C2BBdjECgUJxOLF/3I+bLAK4otvnyKIoHvB8s80HTvpEZ7Hm3bDc5zM3ZPjPxxJk84JjPQUbT4Z5LbMnZtQwdxEJEAmJteDU17Nyi7brgktD9oaujcJCYPTff+liwKJoE8pbKFHy/XFoPuEoiIKIKYiXLABiCqJK913agKPAAWHrz/pD6QWGo4rHIYBcFHGWuX8zJ/R7bPLfGcfgltNuYNTnsb4mw/NTqVgvtdeMxgaRlFgppcV6KORHXMqplxDHCHnDnEUp+NnzMR5+pSjy1yzy+d2bM0Rm+dWqgJGRmld3+xVsGS1yJHkw3H/AwuzicT/OttOhdFbIII4a9yCqyTXjQriYGB6aNf6KfkduPpayQfh0R0+SsdMkg9S4Hz8Z1g8ENHUouiOCAVvwWpPNlb2z1L8Tsnapz+/cmOE/HkmSzQuO91h8PUzjWdBqxL5h9iKieuIvp5nMrjy022MwtAANWchBgRoInR+DFgyKsfswC5SK8HCBIMLbyhfabVIQkIXNjP48EfwIovXMd5m507IClTn1a2e8PYFKi4jqFZMVL1k5JRQirkW8VRd64lOFSy1GwBsMZ0MpeOD5GI+UiPxzl/j87k0ZnDkwhO2dBpu+iCAAEoHi4r7pEYVHEgcBhUSOOz8fRg/LGmc1n/EPyBoLPZRL73MiFX1bOXTk5tOZOIQkoDNxiHOG1k76OMaDBVzR4/PQvAgu8EyLw+W9wbQs3maSNYsDfvfmDN9+OEkmJzjZK/j6/Sn+8O40i08jggyG2Y6IFBKBzvy+XlgQaDt4GMCSDW3i6aJFnGy4KHBDp8lE/7TGulIwelHgA81n3szMCf2Iwl7l6csUoy+LWKq4CipcqoiGk9Mc/Vgi4WUOR0EkvCQSV4g4+lLIbH+nNhimGaXgp8/FePTV2HBO/tolPr8zR0S+An7dqt8yPeCqHp/INNg8JJKu+KHhQVnzs4vG/VinVOhPZFjWqJ9LyIlU9OuHb9sT8OiDtu90JQ4REHAkcaDiQh/gol6fp9sdhizBsahgW73FeYOzX+yeszDgszdn+PeHk6Szgu4+wTdCsb903uz/+Q2GyTK8IBjT2z02qhDR5ob287zQs5Py4b9dAYG2qysfCIT+XLjt6c+n2MrTLuLcM+97xoS+1RQQ/Y2sEeQGQw2gFPzk2RiPvaZFfiYL65bOHZEPsD9hcTiuq/lCKTb1Tk/j5onYUVzLRSKp8xuoH+/QK0qFvgy98+Nl8qk7xf0IHGeQ8Q7NAr2IEVgE+NPi0weIKrikN+C5VgcPvZg7b/AsptdZwsoFAZ+/JcO3HtRiv3dA8Nc/SvG1uzMsnz+7LUwGw3QiBBBBF6lTMKXEgxLUiTTWVe3wtdPfZ1wyWwhxkxBihxBitxDi/xjj+0uFEE8JId4UQrwthLhl8odtMBiqCaXgx8+MFPkblnlzSuQDPBNW813gov6A1DTpoM7EIUA34k7Enw9g24PhLTX+xB0oevIncS6SMoqSEVAghItl5cb92PnhzyfQdiVVppPh2djU42OjC2R7EhYHEnPHw7lsXsAXb0tTn1S4LvQNCv7mR0n2dc2hP26DYRZzVqEvhLCBfwRuBtYDnxBCrB91t/8LuE8pdRHwceB/l/tADQbD9KMU/OiZGI+/XhT55y33+O0bs3NK5J+MCLbWW8Mz7q7snr4YxoI/P0CyILtkQo91nIGSYVnjr+iP9uhPzLMvSvoB1IQiNhu8JhJBEhBkrQzd0eMT2O/kafAV5/drb74L/Lp1lkdHjWJJu+SLt6VpSBXF/t/+OMnezjn0R24wzFLGU9HfBOxWSu1VSrnAvcCdo+6jgEK5qBHoLN8hGgyGmUApuP/XcZ54PUZQEPkr5p7IB3iutTgF95x0QLs7fRmMnWFlW6EmIfQL1hk1wjt/Vk4ZmDWxn9cfjthUE/LpCwTzw5hNSRAucqaHK7o9LPRC7q16i5ORuVPVB1jUJvnS7Wka6xSep8X+3/3EiH2DodYZj9BfBBwq+ffh8Gul/P+ATwkhDgMPAr9flqMzGAwzglLww6fiPPlGlEDqdJ3zV3j89g1Z7DnWV5Ox4LVGe1joXz2N1fycleVk7DgShYVFR/bsU2ZLKVbTxQQ9+lOjuC8ZLjbGj/bpi+HBWdPFvLxiZVpX9T304m6usaBFV/aN2DcYZg/lOmV/AvgPpdRi4Bbgu0Kc2mYrhPiCEOI1IcRrJ/p7yrRrg8FQTgoi/+ktRZF/wUqPT89BkQ/wSrND3tLiryMvWZmevkSSrsRhnYFPQFtuHlE1kZHDatRU3Jmp6E/EugOwIKMr+qA4nNw3ocdOlSvDuQg+8HI4GG2usaBF8qXb0jTVjxT7e4zYNxhqkvGcto8ApdeLF4dfK+WzwH0ASqkXgTjQNnpDSqlvKqUuVUpd2t7YMrkjNhgMFUMpuHeUyN+4yuO3PjQ3RX4APN9iDw/IuqrHm9RMk8lSqGhPdFAWgGXlsYQHSJS0kTI27see4tGXE1vcTHZoFsD8nL5grIBjsaO4Ij+hx0+FlWnJvLxEAFkBLzbPvao+wPwWyRdvHSX2f2zEvsFQi4zn1P0qsFoIsUIIEUU32/581H0OAtcDCCHWoYX+iXIeqMFgqCxKwQ+ejPPrEpF/0SqPT31wbop8CAdkOQIfSAaK8/unN1+8M2zEVZNoxB05LKuBiY1dnHzqDozO0u+b0GOjMkZrvn04ZrMrcXhyBzEJBHBFWNV3geebbfy5ZdUfZrTY7x8yYt9gqEXOevpWSvnAV4FHgPfQ6TpbhRD/rxDijvBufwJ8XgjxFvAD4DNKTWG0osFgmFaUgv96Is4zb40U+Z/8YBZrjor80QOyLp+mAVnF/Ss6EweRSBRMKnGnsKWJTMUNHzLq35Ox7hSOY2IefdA+fd0YGwzHi04XGwYC6gL98/Y6gnfr566wnT/KxlMQ+7uPzN3nxGCoNcZ1CldKPaiUWqOUWqWU+rPwa/+3Uurn4e1tSqmrlFIXKqU2KqUereRBGwyG8qEUfP/xOM++XRT5F6+e2yIfYF+yOCDLmsYBWQX6Iz2k7TQSRUzGaXZbJ/R4Z9gyIwkmkqEPExb2oyk2407cow+EyTsWEsnhxIEpHctEcRRcGubqe8CzLXNb1M5r1mK/uaEo9v/+J0bsGwy1whw+jRsMBqXgu4/Fee6dosi/ZLXHb143t0U+wLMtxQFZG6dxQFaBw6E/XxKwIFtoUB0/I6w73sSE/im5+RMU/kGQBGUBAsvKIoQ3occvKOlHOJzYP22Dswpc2uvjKB21uS9hcXAODdAai3nN2sZjxL7BUHvM8VO5wTB3KYj8F94dKfI/YUQ+3eGALEk4IKtneqv5UPDng0SycIK2HdCWmckMy9JMZWAWDA/NUgByQln6AC35diIyggIGnX4Gnf4J7n9q1AXawjMctdkyN5tySzmd2N912Ih9g6GameOnc4NhbiIlfOfRkSL/0jVG5Bd4oSRp55x0QEd++luOjiQPomX+xBtxoeDRD4X+RDP0y/Dj+lOw71hYzMstwsKa9jz9Apf36AFaAfBmg02/0fpjiv1/+KkR+wZDNWNO6QbDHEOL/AQvbi2K/MvWuHz8A0bkA+QFvNJUnIR7Rc/EbCflwBc+x2OdSBQC3Zw6UezhJlg18WFZwxV8Nerf46eYpS8n5dMv5OlLgnDRM70syCmWZHXUZh54aY5GbY5mLM++EfsGQ/ViTusGwxxCSvjPRxO8tC0yLPI3nevy8etyRuSHvNFkk7O0yG9xJauHpr+afyJ2FF8ESCQNXjOJIDnhbRTTbsTEU3dOse5MPFY0GN6nwraHJvz4ebmFCAQKSVd8+oU+wOUlA7RebLbx5rZVf5iOplFif1DbeHYeMmLfYKg2zKndYJgjSAn/8UiCl0tE/ua1Lr/xgVxhttGcRwHPtxQjNTf3+tM6IKtAITs+CBtxJ46PbWUABUoQBKkJPXrinvwxjiBIQTggfaJDswDmZRcO3z4SPzTtDbkAawcDGn293z5bsKXBCNkCHU2SL9+WpqVB4vkwEFb2jdg3GKoLI/QNhjmAlPDthxO88l5R5F++1uVj1xqRX8rupMWxqB6Q5UjFxX3THLUT0hk/BCgkknm5idt2HCcd3pI6AWeib/WnpO5M+BBKKvqlNqLxU+c3kAxSKCBv5eiOHp/4QUwRC9hUErX5XNi7YdC0N0m+dFvGiH2DoYoxQt9gmOVICf/+UIJXtxdF/hXrXD5qRP4pPF8yIOvifp/49A7CHeZo4nBYwVYsmIw/v6SCPnHbDmMMzJqKdQcce+JCXyDoyC7ECvP0p3NCbikX9elBaQo4FLfYlzSnzVIKYr+1sSj2//6nSXYYsW8wVAXmHctgmMVICf/2UILXdpSI/PUu97zfiPzRdEcE2+osAnSk5uU9M1PN94TLidixUOgLOnILJrwN2yl44uXEG3GBcsTu+FOs6APMz2qffkBAV3xmhH4ygAv6tVffxURtjsVosT8YVva3HzRi32CYaYzQNxhmKUGgRf7rJSL/yvUu91xjRP5YvNhsDyftrEoHtLkzY9I4Fu9EIgmQNLutRGVswttwShJ3JlPRn+rALIAgKKnol0R9ToRiQ67iyDRPyC1lc48W+hJ4u96i1zF/QKNpazxV7P/jA0bsGwwzjRH6BsMsJAjgXx8cKfKv2uBytxH5Y5IX8EpzaaTm9A/IKlCwqEj8STbigm1PIVoTThH2k2nOlTKKkg4oEMLDsvIT3kZH2JArgKPxI0hmxkvVkVesSOuoTRc9Z8FwKkbsGwzVhxH6BsMsww/gWw8meHNXUeRffZ7LR95nRP7peLPRJluI1PQka4ZmyJwPoUVFIVGTasSFqU7FpSwDs0DgB1OL2EwFddT5DYDAFS4nYkfLcWCTYnM4QMsHXm4yUZunw4h9g6G6MELfYJhF+AF861cJtpSI/Ped5/Lhq43IPx2nRGr2zEykZoGuhI6SVCjml0RMTgTtiddqvSwe/UnGbeqGXAEo7EkMzQIds1kYnDVTDbkAq4ckTZ5+HgZM1OYZKYj9tqaRYv+9A+Y5MximGyP0DYZZgh/At36Z4K3docjPwDXn57nLiPwzsjdpcTQmCICIVFw0Q5GaUIiRPIlEYWHRPolGXBiZcuNPMEMfyuPRh9KGXIkziYo+FH36ATKMHZ0ZLOCy3mLUprHvnJm2RskXb0uPEPv/+2dJtu03z5vBMJ0YoW8wzAL8AL75iyRv7SmK/GsvzHPnVXkj8s9CIUXFBTb2+yRmzrXD0fgRFApJQGu+g4iKTGo7pSk3k4vXHOXRn9RRQOCnKFb0J5e8U6joKxRdiZkT+qCjNp0wavNA3OJQ3PxxnYm2BjWm2N+63yQXGQzThRH6BkON4wfwL79I8vZeZ1jkf+CiPLdfaUT+2eh1BFvrLSQzG6lZoCBkJQHzJ5GfD7rx1bZyFKbiyiA59QObrHUnqKPwIrQnkaUPIyfkHo134ouZa5ROBnDeQICFruo/b6I2z0pbg+JLodj3AxhKC/7pZwne2WueO4NhOjBC32CoYTwf/vnnSd4pEfnXX5zntsuNyB8PL4WRmh6wMh3QPkORmgW64kcoTMRdkJts4k4xQ98f9shPkIKwH/15gvh+0TY0WY9+XCZo9JoRCHy8GW3IBbgsjNoMgDcbbNLGiXJWWhsUX759pNj/558neXuPEfsGQ6UxQt9gqFEKIv/dfUWR/8GL89yy2Yj88eCPitTc3DtzleICnYlDwxGS8ybZiFuaoR9MxrbDaI++tt5MhtJG4Ml69KFo3wkI6Jxh+86inGRhTkdt5gS80mTE6nhoqdeV/fZmLfbTGfjnXyTZsts8fwZDJTFC32CoQTwf/in0uhZE/ocuyXOzEfnj5t16myFbi/x6X7F2cAbN+UDWztAX6UEBlnJoy3dMajvFyrnCn1TizqmISV7oKDYCTz51B0qTdyRdM9iQW6BQ1feAF5rtGUr3rz1a6hVfvi1NRyj2MxltO3xjpxH7BkOlMELfYKgxXA+dXnGgKPJvuNSI/InyYrP2XHjoNJWZfjM8Gj8CaH9+e34etpqc+CladyZf0UeNkq5TitcEEFOr6IfJO6BmvKIPsGEgIBno5+RkRPBe3Uy/emqHpjpd2Z/XEor9LHzrV0leN2LfYKgI5t3JYKghCiL/vQMOQaBF/o2X5rlp08Snjs5ljsYEe5MWhdbbS2YwUrNAZxkacWGkdWdSw7L0Q0f9e3JCX8oYStp6Oq6VR4jJvU47wphRBRyPHcUT7qS2Uy4iCi7qC0zU5iQpiP35rZIgFPv/+qskr243Yt9gKDdG6BsMNULeJZww6QyfHG+6LM+NRuRPmJeaiwOy1g36NPgz24QLpRNxJfMnOREXdLRmYSpuMFmhP5pJCn0QOnlHb6RkETIxojJGi9sWNuT6HIt3TvJ4ysdlvXqwmgTeS9mciJrLaROhMaXF/sK2otj/tweTvPze5CJlDQbD2BihbzDUAAWRv+NQUeTfvCnHDZcZkT9R8gJea9RpOwGweYYjNQt0hY24isk34kJhWJYW5pPK0AfEKOvOVCSsXzoddwr2nY6SCbnVYN9p8hRrhopRmy82m2r0RGlIKr54a5pFbYG+QpmDbz+U4KVtRuwbDOXCCH2DocrJu/APDyTZedgZPhnesinHDZfOrH2hVnmz0SZv6SbcVleyIjPzrZRpe4gBpx8F2MqhdZKNuDByWNbkPfolFXzBFCr6EAw35MpJV/Sh6NPXDblHJr2dclIatflKk03eFPUnTH1S8cXbMixuL4r9/3g4wQtbjdg3GMqBEfoGQxVTEPm7Dhcr+bduzvEhI/InhUJXXhV6Eu6m0H4x05Q24s7LLcCawltzadPrZCv6pzAFoT+ioj8VoZ9dMNyQWw3JOwCr0pIWVyGAIUsvIg0Tpy4Riv2Ootj/ziMJnnvHiH2DYaoYoW8wVCk5F/7uJ6kRIv/2y3Ncf7ER+ZPlYELQGRcEgKMUF1VBEy7A0YQW+gHBcOPpZBDCw7LygARlIWV8ctuRp3TjTvqYAr90Ou7kIzbbcvOHj+RE7NiMN+SCXr5c2lsStdliT+GZmtuk4oov3ZphSSj2M1n47mMJnnnbiH2DYSoYoW8wVCGZHPzNj1Ls6bSHI+juvDLHdUbkT4kXS5pwL+wPSMy8awcoVPQVaqqNuCXRmnoqbXmuV4gpV/Q1tj35in5URWl2W4cHZx2Ld016W+VkY59PROkFyOGYxYGEOa1OlmRc8cVbMyybHyAlZLPw/ccSPL0lOtOHZjDULOYdyWCoMoaygr/+UYr9R218X5/s7royx7UbjcifChkb3mrQw40k2rZTLRyLdw434k6lom+PmIqbOuN9z4w64z8nQmmfwFQ8+lA6OCsYtjvNNAkJ5/frqr4LPG+iNqdEMq74/C1plhfEfg5+8EScp940Yt9gmAxG6BsMVcRAWvCN+5McOh6K/Bx89Jos7zcif8q80uTgC13NX5STLMxVh8kiZ2XojXTribjYtObbJ70tp3RYVjAFf74sz8AsKJ2Oy5Q8+qAXQYWG3KPxw1PaVjkpNOVK9GJy0Gj9KZGMwedvTbNyYVHs3/tknCfeMGLfYJgoRugbDFVC35Dg6/el6DypRX4uDx//QJYrz/Nm+tBqHgW81Kz90z6wuad6ntOCBUUS0JbrmPREXADbKbXulKkRt8CUp+MypXhNKAp93ZBbPUJ/QV6xJCsRQB54xURtTplEFD53c5pVJWL/vqfiPPKqEfsGw0QwQt9gqAK6+wV/9cMUx3otPB/yefjkdVk2r6seQVrL7ExZdEcEPhCXivMGqsScz+jEncnn58NIj/6UKvplRMo4SunpuJaVQ0yhibYtNw/QC7dj8S58UT32q0JVX2fqa4uYYWrEo/DZm9Ocs8gfFvs/fibOL16ITeUik8EwpzBC32CYYU70Cb5+f4qT/UWR/+kbMlxyrhH55eLFFl1h9YGLw+bJaqHQiKsn4k5R6JdpKq4Ybd2BqU3HHe4XmFrEZlwmaPSaw4ZcnxOxo5PeVrlZNxiQCvRz1O0IttWb02s50GI/w5olWuzncvCLF2P85Fkj9g2G8WDeiQyGGeRYj8XX70vRM6BFvucqPntThgtXVU+lstbpdQTb6iwCtIf6st7qiNQscDRxBBnWf6fSiAsFj35hKu5UmnFHo0BNvkZdtO+ocHLv5OkI8/SDKmrIBXAUXNwbYFOs6hvKQywCn70pw/rlPlLpgIJHXo1x71NxI/YNhrNghL7BMEN0nrT4+v0p+oYsXA98T/G5m7NsWGFEfjl5OfTme8DKdECbWz3KwBV5uqMnQmkuaA2tKZOl6NGfwlRcKFbvy6Si/KAwNEuWoSG3dEJu9fj0AS7p88OfEt5L2ZyMVsM4ttlBxIHP3JDhwlUeCi32n3ozyncejZ/SO24wGIoYoW8wzACHjlt84/4UA2mB64EKFF+4NcPaZUbklxNf6MZIBQTA5iqr5h+PHw3T8wNa3HaiamqNhqXNrkEw+Yr+WLn5Ygqa3x9R0Z9qQ+58BAKFoitRHRNyCzR5ijVDARbaJmaq+uXFseFT12e5ZLW2NWYy8Pw7Uf79oQRBdf1pGwxVgxH6BsM0s/+ozV//KMVQVuC6gFR8+fYMqxebM1W5ebdeRx36QL2vOHewup7jEY242anZdkCGQr9g3UlOcXsFwqr0FMqmgZ8CoU83pVcdJkOpvelYrJOA6vqdXtqrq/o+8EqTjWeK+mXFtuATH8iyeZ2LEHqY4MvvRfjmLxP41fVSMBiqAiP0DYZpZE+nzd/8KEkmJ8i7IFB85Y4MyxeYM1QleCmsqHrApX0+1VZfHdmIO/mJuAC2nQkluUIGcWAKEY9lNj4XE4AUtj0wpW0lgiT1XgMCgSc8TsaOTf0Ay8g5Q5JmTz9/g5ZgS0O1vepqH8uCj16T433na7GfzcIbuyL808+SuCbDwGAYgRH6BsM08d4Bm7/9cZKcK8jlwRaKr96ZZsk8I/IrwbGoYE/SGq73Xlplth3QQr+QkjPVRlzbLk7FnXKG/phCfwpDs4aPR2A7UxP6UDo4q7oackFf/7i01y825ZpJuRVBCLjzyhzXXZTHEpDNwNt7Hf7hp0lyZr6gwTCMEfoGwzSwZbfDPz6QxPW0yI/aij+4K82idtNFVikKkZoesG7Qp8GvniZcAF/4nIwfQ4VSv61sjbiqJM6yfAg5+eevnKk7UBT6AZKjieoS+gAX9fk4Si+N9sctDsWNf6cSCAG3bMpz42V5LFt79t874PB3P06Ryc300RkM1YER+gZDhXlpW4Rv/jKJFwhyOUhGJV/7SJr5rUbkV4q8gNca9dCiANhUhdX8k7GjBAQESJq8VuIyMaXtFRtx5ZSHZelm3FDYC6ZSzAdGV/TLIfQXlkzIra6GXIBkABsGgpIBWmZSbqUQAj50SZ7bLs9h29qzv+twsQ/KYJjrGKFvMFSQp7dE+Y+HEwThoJfGpORrd6dpbzIiv5JsabTJW7ohssWVrExX3/NdbMT16cjNn/L2nJKKfrVZd8o5HRd0ln6Bo/HiHIJq4tJePSk3AN5otMmYs21FufZCl49cXRT7+zptvnF/kv4hI/YNcxvz1mMwVACl4KGXo9z7pB7oks1Ce0PAH3wkTXNddVlIZhsKeCGM1PSAzWEKSrVRbMRVzJviRFzQHv1yTMXVjBGvOaWwckEwnAI0tem4AKmgjpSvs/nzIk9P9MSUtlcJFmcl83P6OcsJeL3JePUrzZUbXD72/iyOA9kcHDhq85c/THGyvxrfAQyG6cEIfYOhzCgFP30uxs+ej+spjjlY3Brw1Q+nqU8akV9pDiUEnXFBADhKsbG/+mw7UNqIq5iXLYPQdwrRmmpqw7Kg7Kk7AIFfWHxMPUsfoL20IbcKffqjm3ILi09DZdm01uOT12WIRvRV1K5ui7+8N0XnSSN3DHMT88o3GMqIlPBfT8R59NUYUukTzYp5Pl++M00yNtNHNzco+KE94IKBgGQV6nyJ5Fi8a7gRd6qJO0CJeBb4wdQy9MccjjVVn36QomD4L49Pv6Qht8qSdwqc3x8Qk/qpOxYV7EqZU+50sPEcn9++IUM8psjl4ESfxV/dl2Jvp7mqYph7mHcdg6FMBAF8++EEz74dRUpt11m72OMLt2WIRWb66OYGGRveatBNuBLY1FOFKh/ojh3HFz4SSb3fSHIKU2wLjJiKO9WK/piqfmpKvzR5xy5DRb8g9FWVNuQCRBVc2O+bptwZYP0yn8/fkiGVUOTz0Dcg+JsfJXnvgBH7hrmFEfoGQxnwfPiXXyR5dXuEQOpmsI2rPH7n5iwRc26fNl5tdPCEFlULc5KFuepr0oRiI25AUJZqvq6SF6fiTjV151Trjpqyncf3ixV9pwwV/dJJwp3xw8P9CdXGZT3Fptx36y36zPvBtLFyQcCXbk/TVKfIuzCQFvzDT1O8sdP8EgxzByP0DYYpknPhH36a5O29DkFYyb9ivcunPpjFNn9h04ZCT8JV6LSdzb1eVTbhwsiJuOVoxBXCxRIeoFDSQcro1DY4hqgXUxT6QVCnsxApHe41eer8BuKhRSlnZemNdk95m5Wg3VUsy0gE4AKvmKr+tLK4TfJ7d6Rpa5J4HqQz8M1fJnnuHXOZ1TA3MDLEYJgCA2nB1+9LseOQQxDogS3XbcxzzzW5gqYxTBO7UhYno7oJNyYV5/VXZzUfio24CjWiMj1ZihXywrCsqb34xvToT5FSO1E5hL5A0JGbj4WFrGKfPhSr+h7wUpNNdRrKZi/tTZKv3JFmQZvED3RAwncfS/DIq1NcEBsMNYAR+gbDJDnRJ/iLe1McOm7j+9quc9vlOW67Im9E/gxQ2oR7SZ9PtDqdHCgUx+Kdw1aTclh3bDs9vPWgDH7/Mf34U7XulBxXcYrv1OgYTt6pbqG/djCgLtDPX68j2FpvTr3TTVOd4vduT7N0XkAQ6CuvP3kmzk+ejVUiZMpgqBrMu43BMAkOHbf4i3vrONlv4fmQz8PHP5Dl+ounNgjIMDn6HNhabxGgm3Avq8JJuAV6o93krTwSSTJIUec3THmbxRQbie9PNUOfsUX9VK07flHoO2Wo6IMenKUbcmXVNuQC2MAlvcWq/gstxr4zE9QlFF+6Lc2axb4OTMjBw6/E+P7jcaY0JsJgqGKM0DcYJsj2gzZfvy/FYEbgeuB7it+9KcPmdd5MH9qc5ZUwo9wHVmQC2tzqLdEVJ+IGwxXpqVJMsSlDhj5UyKOfHL5QYNkZ9G9rapT2N3RVcUMuwMW9ATZ6IboraXEsai77zQTxKHz25gznr/T1nJMsPPNWlG/+KoE39ZekwVB1GKFvMEyA13c6/MNPk+RcQd7V4ucrd2TYsMKcIWaKAHi5qSj0N/dU9++imLhTnkZcYESKjT/VxJ1hyi2arRKxr0rsRpOnwWsiKmOAIG2n6Y/0TnmblaLRV5w7GCAIvfqmKXfGiDjw6Q9l2HSuLs5ksvD6jgh/++MkmdwMH5zBUGaM0DcYxsnTW6L866+SeIEgl4O4I/nah9MsX1C9NpG5wNZ6iwFHi/w6X7F2sLqvwWuhL8NG3PIIfdseGp6yO+VoTU5TvS+Dkbl4bAqnDD593ZBbGz590JNyLfRr9dUmm7wp6s8YtgW/cW2Way/MYwkdpLDjoMNf/rCOngHzizHMHozQNxjOglLw8xdi3Puk9nHmctCUknzt7jTzW6tbVM4FSptwL+3zqeZxOArF0fgRJApBeRpxgZIMfTHCCz9pKiT0S7P0yzEdF0obcoOqF/or05LW0FaWtmBLYzW/Wmc/QsDtV+S548octq0r+4eOWfzFvSmOnDDyyDA7MK9kg+EMSAnffzzOgy/FtJ8zBwuaA752d5qW+ur1A88VjkcFu1O6CVcBl1ZxEy7AoNNP1s4gkURlnEavuSzbdUo8+n45UnfGFPVlqOgP9w/Islh3YHRD7uGybLNSCHRV3yZsyg3nPhhmlmsucPnU9RmiEf0ef7zX4i9/mGLnIbMQM9Q+RugbDKfB8+Gbv0rw3DtRndCQhXMW+HzlrjSpuDk9VwMvlVTz1w76NPrV/XspNuLKsjXiQmkzbpkq+mPIz6k24wJh9GdY0S9X8k7JVZGuRHULfYAL+30iSjflHopbHEwYm0g1sPEcn8/dkiaVUOTzMDAk+LufJHlth+mlMNQ2RugbDGMwmBH89f0ptuyKEEh9Sfeiczw+f1uGmBmoWBW4Al5r0hXRALi8yqv5AEcTRaFfrkZcCLDtDCBBibLk6I85MKsMayjfT5V1Oi5Ak9tCREZQwJA9wJAzUJbtVopkAOcNFL36L5qm3Kph9aKA37sjTUuDJO/CUEbwr79K8sQbZrCWoXYxQt9gGMXxXu3R3Ntl44fTbt9/QZ5PXp/FNn8xVcOWRpuspcVSsydZma7+fgld0VeoMgr9EdGaQYKyvK0rNUrYqzI3445MCpoKFhZt+dIJuZ1l2W4luazHR6Bfu1sabNLGIVI1LGyVfOXOcIqur6089z0V58fPmMFahtrEyBaDoYS9nTZ//oMUJ/r0IKxcDj58VY47rzLTbquN0ibczaFwqnZ0I65ekHRky9WIWzIVtyy2Hb2t8X1tYvjDx6dKFihTpyM3HwEENdCQC7Awp1iY06+DnIBXm0xVv5poqVd89Y40qxaGU3Rz8MirMb79cAK/+i8cGgwjMELfYAh5Y6fDX/8oSToncF09COszN2S45kIz7bbaOBQXHI4LAsBSiov6q//sO2QPMugMIFHYKkKz21qW7RanzKryZehXYGAWlDbjCuwyWmx0Q65VEw25BS7rKTblvmiacquOZFzxhVvTXLDSQyp9ZffFrRH+/icma99QWxihbzAAT7wR5Vu/SuL6glwebKH46p0ZLlhV3cOX5iovthSr+ecNBCSrX+dzLLSU6EZcbTUpB7ZT5qm4VM6jX+wfUDh2ujwbBdpz84dvd8UPlWWblea8gYCE1NMPTkQEO1PmdFxt6MFaWa7a4GIJyGZg236Hv7i3jpP9tXAN0WAwQt8wx5ESfvhUnPufjg8n6zQmJH/00SGWza8B9TgHydja1yypnSZcKG3EDcrYiFva1KoI/PrybLRC8ZpKRZAyCkqA8LGs7JS3CdDqtmMpXRXvi/SStTNl2W4liSjY2BdgEUZtthj7TjViWfCRq3PcvDmHVcjaP27x5z+oY2+naa4wVD9G6BvmLHkX/uWXCZ56Mzqckb+kLeAP70nT1mAupFcrrzXaeEKL/Pk5yaJs9TfhQmUacQEcJx1OxQVflsm6M1rUK8rSjAuU9BGokqsRU8NWDm35DgQWkoBjser36QNcEk7KDYBtdRY9EVMlrkaEgOsvcvnUBzPEoopsDrr7BN+438RvGqofI/QNc5K+IcFf3Zfird1hfGYGNizz+L07TUZ+NaPQTbgKcIFNvbXRhAuVacSFQkVfv2bL1oxbIY8+lPr0VUl/wdRpDxtyJcHw1ZNqp81VrExLBLqq/3KTqRBXMxtX+XzptgxNdWo4fvNbv0ry0MtRk8hjqFqM0DfMOQ4cs/if309x6LiN7xfjMz9zY5aIKc5UNbtSFiejugk3KhUX1kATLkDOytAX6UEBAptWt71s2y6tipdL6I/t0S+PkvGHh2bJslX0geEBZBJFVw0k7xS4NKzqe8DLzTZ+raxc5yjL5wd89a6hYvxmFn76XJzvPhY3iTyGqsQIfcOc4o2dDn/1wxT9aQvXg3wePvb+rInPrBFKIzUv6veJ1kgV7ehwI25Ae24etirfirI0pjIoV+pOBTNgShuGyxuxWZg0rGqmIRfg3MGABl+brwZswbv1pqpf7bQ1KL565xBrFvvDvV3PvR3lH35qEnkM1YcR+oY5gVLw4MtRvvnLYrKOUIov3Z7mig3eTB+eYRz0ObCt3kICEtjcUzvls0K2e0BAR658th1tfxmiIMz9Clp3yl/RV2UbmgXQnpuHQKCA7uhJXJEv27YriUXRq1+I2jRUP8kYfO6WDJev1/HLmSxs3efw5z+o41iPkVaG6sG8Gg2zHs+Hbz+c4OfPx3XTbZis88f3pFm9uHbE4lznlWYHiZ4muiIT0O7WSDmfQuKObsSdX8ZGXMvKIUSgtx1EUCpang1X1KOfonD5zLLKJ/QdFaEl3xbadwKOx7vKtu1Kc3GfztQPgN1Ji66YubxYCzg2fPSaHLdszmFZWuwfPmHxv36QYut+4wM1VAdG6BtmNYMZwd/8KMUr7+mm22wWlnf4/NE9adqbaiOtxaAF0EthE25hEm4tcSx+ZDgZp5wV/aL1pYzDshhD1Kvh/02ZEc24ZazoA7SH9p1amZBboN6HdQNBON1Xv9YNtUFpIk88psjloG9Q8A8/TfL466ZJ1zDzGKFvmLUcPmHxv/4rxZ5OW48xz8Cmc12+fGeGpEnWqSnerbcYtLUIqvMVawdrZ5Hmijzd0ZPIsBW3rWS401SxndIM/TLZdkZTaF4p05+MPzw0S5S1GRdKG3IlXYnamJBb4LLQvuOiI2Rz5uxcU2xc5fN7d6Rpa5S4rq7u3/90nO88app0DTPLuN5KhBA3CSF2CCF2CyH+j9Pc52NCiG1CiK1CiP8q72EaDBPj1e0Of/6DFN0Duuk2m4M7rszxsWtz2OYEWnOUTsK9LLQ51ArH412haSegNd9BREXKtm1nuKIv8cs1LAsq6tEf2Yxb3op+R25+SUNubQn9ZRk5bEfLWPBGYy29yg0AS9olf/DhNKsWBQSBFvvPvxPlr+9PMZA2dizDzHBWySOEsIF/BG4G1gOfEEKsH3Wf1cD/CVyllNoA/GH5D9VgODtSwk+ejfFvDxabbpGKz96U4dqNrknWqUGORQV7khbaiQ6X1sgk3AIFC4kkoKOM1XwYVdEPyljRr6BHX8o4SmkRa1l5hChfM3x7yfN7InYUX9SOxUsAl/UUm3ILVjVDbVGfVHzptjSb1+nXdSYLOw/Z/M//SnHouKkyGaaf8bzqNgG7lVJ7lVIucC9w56j7fB74R6VUL4BS6nh5D9NgODvprOAfH0jy6Kux4abbpqTkjz+aZsOK2jnhG0ZSqOb7wLpBnwa/tuRPoRFXoso6ERfAttPDt4OgjBX9MSVmuZ53QeAnh33/5azqx2ScJrcFEPj4nIgdLdu2p4ML+n1iSqdKHYkJ9ieMMKxFHDuMbb5SX0HOZOFYj8Vf3psyk3QN08543kUWAaWhxIfDr5WyBlgjhHheCPGSEOKmch2gwTAeOk8Wkw4Kk27XLPL5o48O0WGabmuWvNB+ZYUW+rUUqVng6HAjbvmFvuMMDm+7nBX9sQdmlW3zJceqKurTr6WGXIC4hPP7/eFJuS+0GPtOrSIEXHOBy2dvzpBKKPJ5GEjrSbo/+nUMaU5LhmmiXOUCB1gNXAt8AviWEKJp9J2EEF8QQrwmhHjtRH9PmXZtmOu8ucvhz+9NcaLPwgsn3X7wojyfvzVDokxpg4aZ4Y0mm7ylRX6rK1mRqa2zoy98TsSOoUI53l5u646dhrDJt2wZ+jCGdUeVzaMPBZ9+mKVfxqFZoJ9jnbxTe0If4NLQvuMDbzfYDBmtX9OsXerzBx9OM7+1OEn30ddi/M2PkgxmjJfUUHnGI/SPAEtK/r04/Foph4GfK6U8pdQ+YCda+I9AKfVNpdSlSqlL2xtbJnvMBgOg/fg/ez7Gv/wiSc4V5F2QvuIzN2a45XIz6bbWUYychLu5V1c6a4kTsaPI8L9mt5WYjJd1+yNTd8oXr4lSY1Twyyf0i8k7smIVfYWkK3GwrNueDhbkFUuyekHrAi+bqM2ap6NJ8gcfHuKClR5S6WLUewcc/ux7KfZ2mpWcobKMR+i/CqwWQqwQQkSBjwM/H3WfB9DVfIQQbWgrz97yHabBMJLBjODvf5rkoZeLfvy6mOSP7k5z4Srjx58NHEjowUEBYCvFxr7atO1AJSbiaoo5+qJEPJeDyjXjwsiKfrmTd0qvmhyLdSGpratAAJf26mQpD3ipya7Bn8AwmkQUfvuGLLduLvr2j/dafP2+FM+8HTF5+4aKcVahr5Tyga8CjwDvAfcppbYKIf5fIcQd4d0eAbqFENuAp4D/ppTqrtRBG+Y2ezpt/ux7Kd474OgIswysWuDzJx/Vl0cNs4OCP9kDLuwPSNTgr1YLfYVElt2fL4SHbeUACUogg2T5tj2mR7+MFf2S6bjlFvrJIEWd3wCAK1y6Y7WXDbF+ICAZKCTQHRFsrzNNubOBwnCtz92SoT6pffvpDHz/8QTfeTSOZ2pUhgowrmuCSqkHgQdHfe3/LrmtgD8OPwyGiqAUPPlmlB8/E0dKcD3I5+FDF+e5aVMey5wLZw1DtvYnK/SQrFqbhFvgaKJyjbjFxJ3CsKwyGpvGzNEv3+aDkim+dpmn44K27wzU9Q035Lbny9sbUWkiCi7qC3iu1cFHW9jWD7kzfViGMnHuEp+vfWSI7zyW5NBxGxnm7R85afPF2zK0NpryvqF8GGlkqAlyLnzzlwnufzpOEEAup60EX7hV+/GNyJ9dvNzsEKAbEhdnAxbka+/EFxBwPNYZCv1KNOIW/fnlte2cjnJad4rHW+5mXICO7PyaTd4pcGlvsSl3e51Fd6TWOlQMZ6K1QfGVO9NsWuuhQt/+3iM2f/b9Ot7aY/oyDOXDyCND1XPkhMX/+H4db+6K6OjMLMxvDvhvvzHEumW1Wek1nB6J9iWDbkbc3Fubv+Pu2HF8ESCR1PkNJMssxotNrGVuxAVQp/qkyunRL12YVKqiXxD6XfFDZ39AFdLsKc4ZCoajNl9qNk2bs42oA79xbZa735fDcfQE994Bwf/+WZL7no7j115bkqEKMULfUNW8uDXC//pBiuO9Ojozm4Ur1rn8wUfStNTXXpXXcHa211n0RQQ+kAgUGwZq0JwPHIt3AlTEnw+llfDyC30t6kf9fZW1GbckR99OQ5nbTUuvnhTnGNQehaq+B7zSZOOZov6sQwi4coPLV+5M09Yo8Tx9nnv89Sh/9cMUJ/vNL90wNYzQN1QlORe+/XCC/3wkgesLcnkIPMUnr8tyz/tzOKa4NWt5oaUYqXlJn0+kNjVaSeKOpCNbfqFfWtH3gzJX9MeirL8HGxkkQAlAjpjwWw7q/AYSYXNyzsrRG63NbIjVQ5ImTy9TBm3B2w3mjW+2smxewB/dneb8lf5wBOfuIzZ/9r063txlrDyGyWOEvqHqOHBMW3Ve3qatOtksNKckf/KxNJec68304RkqyMmIYEfKQqJrvJt6a/fatRb6EoVkfgUq+rY9OFypDsot9Mes3pd3xeX7lZuOKxB05BZgYdXs4CzQJ+hL+opV/ReNfWdWk4wrPnNDhruu1MWsbBb6BwX/8osk9z5prDyGyWGEvqFqUAoeey3KX9xbN8Kqc9Eqjz/+6BDzmmvTwmEYPwUfsgesHgpo9mqznK9QHI0fQYbiuCIZ+k5hKi4V8OhXNkcfSo9Z4ZQ5YhMKE3JBEtSs0Ae4uNfHQadP7UtYHIkZK8dsRgi45gKXr96Vpr1J4nq6L+3JN6P85b0pTvSZ379hYhihb6gKBtKCf/hpkh8/E8f3daqO9BW/eV2WT34wSywy00doqDSegFebHBQ6aWRzb+1evemJnsS1XCSSRJAi5deXfR+l4nhaUnfKLfSDQiSoKhn8VT46sgsQWHpCbvxw2bc/XaQCWDegm3J94MUWY+OYCyztCPjDu4e4cFVxmu6eIzb//Xt1vLDVDNgyjB8j9A0zztb9Dn/63Tq27ndGpup8fIhLjVVnzvB2g03G1mKm0ZOsHqrdM1mhgiyRzA8TYMpNqd2lNK6yHJS7ej8WlbTuQPEqigKOxg/XbEMuwKaeon3njUabrDlzzwmSMfj0h7J85OockTCVZ2BI8J+PJPjmLxOks6a6bzg7pjRgmDH8AH72fIzHXosBxQFY123Mc/PmvGm4nWO80Fxswr02TBupVUqF/rzsogrsoVAFnyaPvlIVqOjXAYVm3PIL/UavmYiM4ls+aTvNoNNPg99U9v1MB0uyknl5SWfMIiu02L+qhvtXDONHCLj6PJdl83x+8GSSoz0WQQCv7Yiwr8vmMzdlWbvUvBYMp6eWz6WGGubwCYv/+f0Uj70W05clsxCxFF+6Lc3tVxqRP9c4FBccTAgCwFKKi/tq+8Slhb4KK/rlF/qWnUGEE3dlEEepytdsyl3l9/2UVjGAbQ+UddswsiG31n36Ah21aRM25bY4NXx9wjAZlrRLvvaRIa46zx0esHW81+JvfpTiR7+OmUZdw2kxQt8wrUgJD70c5X/+Vx1HTtr4vn7DOmehz//340OcayoTc5IXSyI1NwwEpGr4ZaBQHE0cQYbZ8JVoxHVKpuKW27YDIGTlG99LG4idCgzNgsLgrLAhN1G7Qh/ggv6AqNRpVJ1Rwd6kOX3PNWIRuPt9OX73pgyNKUU+r+08j74W43/9V4rOk+Y1YTgV86owTBvHey3+6ocpfvZ82HCbB89T3HVVji/elqEuYWpUc5EhG95ssFHoZJHLa9yS0B/pIWdlkSjiQZJ6r7Hs+xiRoV/uxJ3TMca03KlQajeyK5C6AwWhb4UTcmtb6MckXNivLW0+8IKJ2pyzbFju8ycfHeK8FT5BoItl+7ts/sf3UzzxRtQ06hpGYDz6hoqjFPz6rSg/eTaG6wmCQFchFrcF/NaHsrQ3mdjMuczLzQ6+0OJlYU6yOFvbr4euEn/+gtziyjTiDgtjWX5/PjBmZn6ZxYPvJ4dvF6NCy/tclU7I7YofKuu2Z4JLe31ea3bw0c3rA8c8GvyZPirDTFCfVPzuTRle3BblFy/GyOYEfiC476k4b+5y+PQNOTpMJLUBU9E3VJjeQcHf/0QP+8h7gryrozNvuizHH96dNiJ/jiPR2fkKcIErerwKyOLppWARkQTMq8CgLACn0hV9WfmSoFIxlNS5uUJ4WFau7PtoybdhK+1nH3T6SVeg6Xc6mZdXLM3o90wPeKXJ1OrmMkLAlRtc/vDuNEvnBfg+pDOw46DDn35XV/enwYVnqHKM0DdUBKXg+Xcj/Ol369h2wBm+vNicCvije4a44VIXy7z65jzv1lv0OboJNxkozhuo/bNSoRFXISsm9EdOxS1/Rv9I9NJLlNm6A2FDroJKZelbWOHgLIugxhtyC4xoym22qf2/GMNUmdcs+f270ty0SQdZZLIwlNHV/a/fl+JYjznZzmXMb99Qdk70Cf72x0m++2iCdE7gutqq8/7z8/zJR9MsbjenJoPmhZIm3E29Pk6Ne0sViq744Yo24sLoDP3psu6U/5cTBJXN0gfoKJ2QW+MNuQDrBgNSgV7m9TqCrfXmNG4Ax4YbLsnztY8MsaQjwAsn6u48ZPPfv5fi8ddNdX+uYt4hDGVDSnj0tSj/73fq2H6wWMVPxSRfvTPNHVfliZgrzYaQzphgT9IiQMvKy2q8CRdgwOkja2dQQFTGaXJbKrIfpyRDvxJTccU0WHegsEjR03GdCtlqOsKBZRLF0VjtC31HwcW9ARba7vZis3lTNRRZ1Cb5gw/r6r5tFav79z8d569+aKr7cxHzDmEoC4dPWHz30QQHjtkopYdfeR5ce0GemzbniZpXmmEUz4fVfB/YMODT4Nd4OR/oShwGdPV4fm5RRRpxAeySOMrKVPRPpRLiv7hIkSN+pnLSMTyZWNGVqP2GXIBL+nyea9NNuTtSFieigna39v9+DOWhUN3fsMzjh08nOHzCxvNg12GbP/1uips2ucM2H8PsxyztDFPC8+GB52L8j+/XceCYTRDoZqDWuoA/unuIO64yIt9wKhkb3mzUTbg+cEVP7VfzoTgRNwiFfmUYWf32K5CjP7ZNpwLWHT9FoaJv2+mybx+gNd+OhaWtLpFuclamIvuZTpo8xZqhAIG2vb1kojYNY1Co7t88yrv/8xdi/Ol36thxyLxu5gJG6BsmzfaDNv/9u3U8/IqeypfLQT6vuPmyHH/ysTRLOowh0DA2rzQ5eGGk5vycZEmNR2oWGNGIm62M0LesHEL4gERJB6WiZd9HJRpvxyII6kqm41amom8rh9ZcBwJBgORYvKsi+5luLuspZuq/0mSTr/W4KkNFcGz40CV5/vDuIVYsCIaHVB45YfHX96f49sMJBjPmxTObMbVWw4TpHxLc/+s4r+3Q0XieD/k8LJ/n84nrciYy03BGJMVhPx6zI1ITtLw/Fk7EVVSwEdceHa05Tc9eBTr5Sq9G2PZA2bdfoCM3n2PxTt2QGz/Cssyqiu1ruliVlrR4ihMRwaAleKPJ5opZ0OdiqAwLW3Wv3EvvRXnw5RjpnMC24cV3I7y71+Ej1+S4coNXWHcbZhFG6BvGjZTw1JYov3ghRs4VBFILfMdS3PO+HFeYNwnDOHivzqI3oiM1Y4Hi/FkQqQkw5AwwZA+hgIiM0uy2VmQ/RS+7Cq0vFWCa7N6l/QVOhVJ3oLQhV86KiE3Qy7tNPT4Pz4vgAc+1OFzeG8yKRbOhMliWzt3fsNzjFy/FeWNXhEwW/EDwnUcTvLQtwm9en2NB6+x4TzZojNA3jIs9nTY/eCLO4RO62dbzIO/CxnM87roqR2PKNIIZxsdzYROuC1zV5xOZJS+do/HioKyO/MKKNeI6JRX9ykzFBabJuuOPiNesjHUHCLP0Z1dDLsDGPp8n2yNkLeiKCnamLM5NG5FmODONKcWnrs9y6WqPnzwX52S/hefB9gMOf/rdOq7d6HLb5TmS8Zk+UkM5MELfcEZ6BwU/fS7OK+9pm47vQy4P7Y2Se27KsnqxuVRsGD/HooLdKR2pKYHNs6QJF0YK/fnZygzKgpEV/YpMxT0NogLWHRkkQQkQAsvKIoSHUpGy76ctNx/QFypORo/jCZdIBXobppu4hI39Pi83O7joRfS5aXemD8tQI6xd6vP/+dgQj78R4+ktMTJZiHjw+OtRXt0e4a6rjZ1nNmCEvmFMXA8efS3Go69Fcb2iTccSils353n/ha6J5jJMmOdKIjXXDfo0zoJIzQI6WlMhkcyrWOLOSI9+4FdmKq6owHCs0+yJIEhh2/0gdPKO7zeVfS9RFaXFbeNE9BgBAcfiXSzOLiv7fmaCzT0+rzbrqM1tdSZq0zAxog7csinPxed4PPB8nJ2HHfw0+L628zzzVpSPfSDHqoWzpygz1zCpO4YRKAWvbnf4f/6jjl++GCPvCvKu7tJfv9Tj//zNIa6/2Ih8w8TJWPBGUzFS88pZVM0HXdFXobm9Uo24AI4zOLwfP6iM0D8lXlOpikzGhdKGXFWx5B2AjuyCMHknmDU+fYBWd2TUZmE+hcEwEea3SL54W4bfvjFDS6PEDc/7ezpt/vLeFP/2YILuflPar0XMO4JhmL2dNj9+Js6ezjARJUzTmd8ccPf7cqxaNLuEmWF6ea3Jxg0jNTvykmWZ2eMlHrIHGXQGkChs5dCSb6vYvmynOBU3qMBU3NNRqSp/4NdBDLRPfwjyFdmN9uk3vh025B6uzE5miE09PjvqbB212Whzw3GP5Oz58zJME0LAhSt91i0d4um3Yjz5ZpRsVqfzvLQtwpu7HK672OWmy/LGv19DGKFv4FiPxU+fj7Fll/bGBoH24SdjijuuybF5nYdlrv0YpoACXggrjR5weY8/q9JBjiaK/vz23AKsCl4sLR2WVbGpuNNm3SksVgQgR/xs5WZeTjdIKxRds0zor0xLOvKSrphFxtKL6mtm2RUzw/QRdfRk3UvXuPzypThv7YmQyYAfFTz8Sozn34lyy+XGwlsrGKE/h+kfEvzypRjPvxtFSoZ9+ErB+y/I86FL8yRqv1/NUAVsr7Pojgh8ICoVG/tnlwgpbcSdl6tcIy4wIp2mIlNxOU31fjqsOxWO2CxwPN6FLzycCjT+zgQC7dX/xYLocNTm1T2B8eYapkRLveLTH8qy9zwt+PcftfFc7d+/7+k4T2+JcudVOS5Z45uG3SrGCP05SCYHj70e44k3dKOtlLr51vNg4yqPW6/I0dZgmrkM5ePZkmr+lb2zJ1KzQGEirkQyv4JCXwgPS7jao68spExUaE/TJ/T1dFwLCCrq0Y/KGE1uK93R4/j4HIt3sSi7tGL7m24u6A94okMxaAtORgTb6i3OGzT+HcPUWbkg4PfvSvPWHocHX9FxnK4Lnb7Fv/4qySOvBtxxZZ7zVhjBX40YoT+HyLnw5JtRHn89RiYnkGEevuvCOQt97rgqx5J2c2IwlJeumGBXaaTmLJzeeaykEXdeJaM1R0zFLVheKsA0LsSCEc24lavoA8zPLqQnegJJQFf88KwS+hEFF/cFPNtajNo8b9BEbRrKgxCw8Ryf81YM8fzWKI+/EWMoI3At2Ndl848PJFm1MOCOq3Kcu2T2vcfXMkbozwHyLjz9VpRHX9Vjr5XSjbZuHua3BNx5ZZ41S8xK3FAZSqv56wd9mrzZVc7P2hn6Ir1IFJZyaMm3V2xf0zIVF8as3osKDdEqDs0SFR2aBdCRW8h7jW8TIPXgrN6K7m7auazH54VWBw/YmbQ4EhMsys+uvzfDzOLY8P4LXC5b4/HUW1GefafYsLvzkM1f359i7VKfO67Ms9JEclYFRujPYvIuPPN2lEdfizGYKRH4LrTWS256X56LV5thGIbKMWjDm406UjMAruqefW/8pf789vw8bCrXnVZsVpWVm4pL6NEfrQ8rmboT4lTQugP6akuhIbczfrCi+5oJGn3F+oGAdxr+/+39d3hk53Xg+X/fe29F5NgAGp27mXMOYhBFyqIkk7KCJTnbGmnGaz+e2fTs/HZ/P++O99nnWc/sepIte2zZlixblmQlUxIVSIliFnPsZjc7B6CRMyrc9P7+uLcC0EA3uhtVt6pwPnxAFKoKqBddqKpT5573nKADz7NdFr887ES9LNGA0slgps5dV9v89LUEz++LkQkD/r1HLfafsLh8m8uDt+S5RDL8kZJAvwFlcvDE6wl++mp8aQbfho5mn4/emeemS6STjqi85zst3LCl5kDOZ0u28UrDlmzErWDZDlC2WbXSU3Gr3XUnUGodWpnsQ084IRdgPDGKrfLEdaIitxWVW6dc9oaB/iutJh8cdWiWOEtUSGta85E7c9x9TZ7HX03w0oE4mSyYJrx9xOKd4xZ7BoOA//JtniQWIyCBfgOZXVA8/mqcp96Mk7eXBvhtTT4fuT3PzZc5mBLgiypwFDzfYaEBG3jPpNNQLTULglaNhYm4FQ70zfLSnQoNywp+/ArnVSb419rC9xIYRgaUh2Fm8Cs0HyCu43TlexhLjODhMZY8zWB2e0VuKyqDWZ+BnM+JpEFewQsdFu+bcKNelmhwnS2aX74nx33X2Tz+aoJXDsaKAf/+4xYHT1ls7/N48NY81+yUUuFqkkC/AYxNGzz2Spzn98ZwvWCTrRsG+O3NPg/fFgT40u9WVNNrbSYLZlCy0+JqrphrvGw+BD30ixtxKxzoW9ZC2VTc6vbQr9TALAg67xhGBtBY5jx2BQeB9eYGGE+M4uMxnDrZcIF+odXm0EA83JRrcs+kiyWl+qIKutt8PvXeLPffmOOJ1xO8tL+U4T80ZPLn/5xmU4fP/Tfmue0Kh5hEoRUn/8R1Smt495TJT15J8NZRC63B94MMvmPDpg6P+++yuX63lOiI6tMEXT8g2IR7z5RTwcr16OSMDNOxSTQahUl3vreitxdk9AtTcas9LKtykaLrNhGLBbdhWgvBIaAK2ZQdYF/b68GG3AYbnFVwxZzHY72aGUsxYyrebDW5ocFmV4ja1t2q+cTdOe6/Ic+TbwQ1/NmswjBgyDX4+8dTPPJcknuutbn3OpvmlLwTrRQJ9OuM68HLB2L85NU4J8eC0Mnzg+DecWFLj8cv3Jznim1yaExE52CTwemEwgMMrbmpAVtqQqk+38OjO9eLqSv7lFo+UKpiU3FX41cwo+82U5iOW8le+gCbcv2lDbmpxtuQC2BpuHna5ac9sXCAlsn1s15Dls6J2tbRHNTw33d9nqfeivP83jiZnEKpYPDWd59L8KOX4tx2hcN7r7MZ6G7MI79RkkC/TkzPK555K2hlNbcYPF27XlCe43lw2RaX+27Is3tANruI6JW31LxxxiXVoM/dp1Oljbh9uc0Vv73yrjSVmopLsY3mssC+gqU7blmpjlXB6bgQbMhVYcg7GR8nb+RI+MmK3mYUbpx2eao7Rl7BsaTB8ZTB9gbcDC/qQ2ta8+Fb89x/fZ4X9wexzOScQR5wYoonX4/z9JtxLhl0uec6m+t2uZiNeBg4AhLo1zCtYd9xi6feiPHmkRhaB+cVAnxTaW691OGe62x62+UJXNSGsbhif7OBT1Cff8dUY2bzAYZTJylsxO3PDlb41jxMMxNOxV3araZyVNmpSmb0C8O//IoPzbJ0jK58L6OJYTw8RpJDbMvsquhtRqHJg6tnXV5tD/rqP9llsf2UDNAS0UrG4e5rbO68yuatIxY/ezPBiVGTvA2WBe8ct3j3lEV7s897rna462qbtmYp67kYEujXoLlFxfP7Yjz9ZpyJ2aDA3vODDbaODS1NPu+72eaOKx3SSXkAiNpSns2/ZMGjy27cv9GR5KmqTMSFpVNxPS8NVGbzjap+iX6w3yA8FFnp0h2ATdl+xhKn8cIJuY0Y6APcMenyeruFC7zVYjAeV/Q08ONR1A/TCCbtXrvL5chpk+f2xXnzcNCpxzDAcQ2++1yCR19IcPUOhzuvcrhqhyt7Di+ABPo1wvXgrSMWz++N8/YxC98PsveeB7YTfN494PKeq22u3O5KBx1RkzImvNIeDMhygfdMNm5bv0VzYclE3K4Kb8S1ynroV3Qqrr/K0cFKlu6U/T5VCfRzm3mb1/DxOZ1qzA25AD22Zs+Cx/5mExt4qtPiYyMyQEvUDqVg14DHroEss7fneGF/nOf2BiXKeQ2xOLx6MMYbh2O0NfncdqXDnVc69HZIFcNaSaAfIa3h5JjBc3vjvLQ/xmIuyGgVs/cOJOOau64Ksvc9Up4jatzzHRZOOCBrU95ne6Zx/2YLAaKPR0+ur6ITcQFMq9RDv2KtNc+qku01y4dmVSOjXz4h92TFby9Kd0y6vNscDNB6qd3kF8ZlgJaoTW1NmvffmOe+6/K8fdTiuX1xDg1ZQamyGWT5f/hCgh+9mGDPoMvNlzncuMelSTr2nJUE+hEYmTJ4+UCMlw/EGJkKjkP5hey9HSTUdva53HaFw3W7pc+sqA+Ogmc7SwOy7mzQAVkFp8MA0cdjoAobcUulO36FO+6s8qJZyT76Zb+PVeEafYDufC9GWPo0FR8nZ2RI+umK324UtmV8+nM+p5IGuXCI3QMyQEvUMMsMynqu2+0yPmPw4oEYLx0oZflNqzSE62tPwJXbXG653OaanS7xWNSrrz0SQlbJxKwqBvenxoPMX6E0x3GDDH5bk89d1znccrlDd1vjZkJFY3q1zWS+bEDW1Q06IKsgyOgHG3H7Kr4Rd3npTuUCfbVKG81KDszy/QTaN1GGhzLyKJVH60TFbs/UFt25TZxOnsLHZyQ5xPbMnordXpQUQVb/m5tLA7TunXSJSRJU1IGedp8P3ZrnAzfn2X/C4qUDMfYeC2r5lYJ4DF47ZPHmEYtEXHPtLpfrdztcuV2C/gIJ9CtEazg1bvDG4RhvHLaKPe81QXDvOkFwb1maa3e63Hq5La0xRd3SBF09IMjm3zvlNPwkzkKQCLApW42M/nzZVNyWit8eGpYekqnkHarwvCYsZYPSWNY8jlO5QB+C8p2R5FCwITfVuIE+BAO0Hu/VTMUUc6bilTaT22akfkfUD9OAK7e7XLndZT6T480jMV45GOPYiIm2gw28tqN4fm+MF9+JEbM0V+5wuX63yzU7HVKVfTqpaRLoryPPg4NDJm8cjvHmYYvJueDQsNalunvXBdPQXL7V5YY9Dpdvc0nIu05R5/Y1Bx09PCDmN+6ArIJ5a5YFax4NWH6cDrur4rcZDMvSBF13Gqt0B4LyHcuaBjSmuYjjdFf09jblgjp9H79hB2cVmMBtUy4/2hTDJnhTfuuMDNAS9aklrbnzqqBF58Sc4vVDcV55N8botIHWQdAfiyleORDj9YMxTDPFZVtcrtzhctV2d8Nt5JVA/yKNTRvsO27xznGT/Sct8nbw1Olr8MOyHM8N/vAu2eJy0x6HK7Y7JOMRL1yIdfSz7lI2/45pl2SDP4+eTpY24m7KbS7We1dSaViWqtywLECt2nWnYjcJBEOzEihAV2VDbm+2Pxyc1fgbcgFumHF5sifGogGjccW+ZoMrFxr8gSoaXner5v4b8rzv+jzDkwZvHQ3mDo1MlQX9Frx5xGLvMYuvA70dPldud7lqh8slg27D74Ns8F9v/c0tKg4NBUH9vmNWsc89BFl7zwuy9r4PiZjm6u3BYaPLtroS3IuGdDylOJYyCHL4mtsbeEBWQTAoCzw8+nKV7Z9fYFapRn81lazRh/INubriQ7MAuvK9GNrEVS4zsSky5iLpqgwhi0bCD6blPtNlBa02uyyuXJABWqIxKAWbu302dwf1/KPTBm8fs3jrSIwTY0F5j1LBUK7hCYORqThPvBYnZml2DXhcssXl0i0e2zZ5Dde+XAL9c5ieV7x7yuLgKZNDQ1axSw6UsvZuGNxrDZ0tPlfscbl6p8PO/sb7gxFiuZ91BbVnDnDNrEer2+DF+cBIuBFXV2UiLpQmxgaF8xUt3Vl1YFZl71e3bDquVYWMvolJb66PodRJPHxOJ0+xa/HSit9ulG6Zcnm+K5iUezBtcCKl2Jpt/Mer2Hg2dfhs6rB53/U2U/OK/SctDpyIceCUSTarUCrI9luWYu8xi3dOWCggHtPsHvDYM+iya8Bje59X95t6JdAvk7PhxKjJ0RGTY+HH9PyywH5Z1j5uaXZv9rhiq8ulW1y623zZUCs2jPG4Ym+LgU/QbeeuBh6QVRD0Xi9txO2tQkbfNBfDru8a30uidSWfuiOq0fdayqbjzlb0tgp6cwMMp07i43I61fiBfpuruXrW4/U2Ewd4stPi14dkgJZobJ0tmjuucLjjCgfHhSMjJgdOxth33GIsrOtXBG07HVfx1lGLvceDwN8wYLDHY0e/x85+j539Lt1tuq7ivA0Z6GsNs4uKoQmToQmDU+Mmp8YNTk+aS17LfD/4cL0guPd9sEzNlh6P3QMel2x12d6Ah3mEWKsnu4K++Q6wZ8GjN9/42cHZ2BRZM4NGE/eTtNudFb/NJcOyKl22U3wSrO596TqlTkKWNVeV29yU7Ud1KHy84lyERnf7pMObbcEArTdaTR4cc+l2Gv9xKwQE9fqXDnpcOujx0O0ws6A4PGxxeNjk3VMWU4XkrgbDDEp9jg4Hid8nXw8uSsY1W3o9Bnt8tvR6bOnx6O/yazYWbOhA3/VgctZgdNpgbCb4GJk0GJowi1NoC3y/lLEvZOshCOy3bQoC+92bXbb2eg2/cUOItZg34ZU2E00wCfeuyY2RGRwOJ+J6+GzObg03dFZWKfDVuG5lW2uuVotf6Rr98mm/ZrUC/dzm4v1X2HfR6Prymp2LPgebjGIHno+NbIzHrhDLtTdrbrzE4cZLgsfA1HwQ+AeVHUvLtZUqTOhV7D9h8e7J4kFIDAN62nz6Oj02dfr0dfr0dQRfp5NR/GYldRuyag2ZnGJ2UTG9YDA1F3yenldMzxtMzgUfyxtI+Dr4Xu2XNs+WX6evI6jJ2rbJY0uvR1+Hj1H5hhpC1J1nOy1cFQT5Azmf7ZmNkRUs77hTnfr88kDfx6twoL+qim/GLc/oz7NCI/9115nvxtIxXOUya82wYM7TXI0ZBRG7c8LhcFMCF3ix3eT94w4tjb+HXohz6mzRdF7qcPOlQeCfycPJcZMToxbHRkyOj5lkyhLFhVp/04ShCYPTkwbKWPrMlUpoulp9ulp9OltLp1ubNG1NPi0pTaKCzVoiC/RzjuKd4yZaqSDYDrPpjqfI2ZB3FDlbkXcgZysyOcViVrGQU8xnDBZz6owgvqAYzOvS9NlCGY7WwR2TiGkGOn0Gujw2dweHXQa6POlpL8Qa5BU81xmU7djAXRPOhunJfTp1kuJE3FzlB2VBMCwroHHd1sre2KoBfWUDfd+Po/0YSnkoZWMYOXw/VdHbNDDoyfUxlDqOj8dI6hS7Fy6v6G3Wgh0Zn805n5NJg5wKOvB8aKzx99cIcb7SiVKpD5RKv4cnTYYnTYbGDU5NmMW5ScGVQBnhGwADXFexkDE5MWqiFCvW9yfimta0piWlSSc1ybgmlQg/4ppkHGKWxjKDSpOYBZYJ5myM+LGz/w6RBfqjsyb/5dtra2Wmw/9pwtcgXTqvvOSmkKkvRBxaQ3uTT0+XT0+7T2978Lmv06Ojub42UwhRS17qMMkaQTa/3fG5Yn5j9OPWaEaSQ/j4KILpqtVgWWVTcSud0V8t0K/4ARuF6zYTi+Uo9NL37coG+gB92QGGU8eDCbnJjRHoK+A9Ey5fG4zjAM91WLx3wiW9MR7GQlwwpYJyn/Zmlyu2ld4c5x2YmDUYmzEZmzEYnQrKxcdnDHJOWbAZHqg0jNLRAKWCNwOZrGJEhSFs+PmccWouhvHq2a8SWaCvfcjllr52FF5flnwuXGGld0AxTXNS097s09kSfO5o8cM7ITg0Eq/b4iQhapOrgrpeCDbhvmfSrcK4qNowGR8nb+Tx8Ul6TTRXOrseMoulLFS8dCeqGn0I3sTEYhOAxrLmcOzeit9mb24AhYGHy6nU8YrfXq24bN6jx9aMxBWLBjzfafG+CcnqC3EhErFCH/+l75a1hsVcWFIelpbPLBhMzRnMZxVzGcV8RmH7KwS5ZU+5KnyRLQ/8lQKVh+ZzvABHFgbHLM32XhfTAlOBUsEhCdOEZEyTiGsSseBwRtwKDl2kk5qmpKY5FXyu1R3OQjSyV9tMZiyFC6Q8zQ0zG6e4dzh1AgAfny3ZwapsxIVlm3Er2UP/bKoQ6AdDs8Je+mZ1NuT2hUdlFDCcOo5GV+1+jZIiqNX/zkAcG3i60+TuSZfYxthqI0RVKAXNKU1zymPLKnkLrSFrw2I2CP5zdukjawfl67m8wvHA9YJyd9dTuB7kZxzazlFBGlmg39Pq8bsfzqAk4y5E3fCBJ8Jsvg08MOlsqMCgEOh7+PRnt1TtdkuBvqpie80zLqjs7ULZ76bLWopWVrvdRdxPkDFcFsxFZmNTtDtdVbntqF015/FEr2bKUsyaipfaTe6Y3jhv3IWoBUoFewHSCZ+e9vP73vzQIp0PdvNv/5fVr7NRjrgLIdbBm60mE3GFB8R9zS0bLCgYSp0keLtTrYm4BBtTlQ1otDbxvXRlb3DVGv3qlO4UjlGbVcroKxR92c0YGPh44X28MVga7ph0MQneuP+sy2JjPaKFaHwS6Ash1kQDP+0uZfNvn3JJbKDNe65yGEuexg+3xVZvI255a80mKt1ycrXMvarCkZszW2xWR1826Kfv4xeP2mwUN0y7NHnB3/R4TPFGm9TECtFIJNAXQqzJO80GpxNBNt/QmtunNtbGvUK3HR+fTrubZIVbPxaUD4+qeNkOZ9l0qyv/rs71Sp3YLGu24rdXUAj0Nf6G2pALENNw61SQ1XeAJ7rMKs9EFkJUkgT6QohzWp7Nv3naJb3BjvEPFevzvSrX5xcy2z6uU4UuP9GV6C9pHVqt6bgAfWEZlgZOJ0/iqo31JvbmKZe4HxSlDSUM9p2rjYcQom7Io1kIcU6H0wbHUwYeQcb3PZMbLMoHhssGZQ1UqT4fwCobllWVqbjFjP7yyL4aXXeaijdjmosEkxoqL+010eq0o1A4ymEscboqt1srUn7w5t0geCP/RLclWX0hGoQE+kKIcypk8x3g+hmPVnfjhQHDqRPo8L9qZvTNJa01q9G3P7rNuGDieeniRETLWqjCbQZKdfrehqvTh6B8J6aDrP6RlMGhtIQHQjQCeSQLIc7qZFJxsCnI5vvA3ZMbq6wBYMGcZyY2jUZjaYuuXOUHORWUT8WtRkY/yoFZUF6+o6tevqNQePjFMq2NpNXVXDdTyur/pEd6XwvRCCTQF0Kc1U96YkCQzb961qXD2ZjZfAjq83tzA5hUrzNJEOwGY8KrsRk3yhp9KLyZUYAuK1uqvP7ihly94TbkFrwnbLXpA++mDQ5LVl+IuiePYiHEqk4nFHubDXzAA+6d2HjZfFga6FezPh/KN+OqJZtVKye6rjtQ3lnIr9rQLICeXB9G+JI4FR8na2aqdtu1ot3RXBtm9R3g8W7J6gtR7yTQF0KsqrzTzuXzLj32xsvmQ2FQlkZXeSIu+JhmqU7d86qR0Q/v44ju6iDQDzP6VQz0LR2jO7cJhYGHz3By4wzOKnf3RJDV94ADTQbHUhImCFHP5BEshFjRSELxRqu54bP5Gs3p1El8fDRUbSIugGkuoNCAj+8l0bryGdaoa/Q9ryWYCQ+YZvV66UOhTh983A25IRegw9FcO1vK6j8mtfpC1LU1BfpKqQ8opQ4opQ4ppf7tWa73MaWUVkrdtH5LFEJE4fGwxZ4DXLLgMZDbmNn8yfgYeSOPj6bJa6bFaavabZcy2hrXqUbZDqt316nWZlynfDpu9TbjQtB5x8DA34CDs8q9ZyII9D1gf5PB8VSlpzELISrlnIG+UsoE/gx4ELgC+LRS6ooVrtcC/GvghfVepBCiukYSijfDbL4LvG/ciXpJkSl0YPHx6A87s1SLWR7oV2Mj7nKq7CWiWoF+sTypul13INiQWzCUOl7sdrTRdNmaa2a9Ygeex7tjUS9JCHGB1pLRvwU4pLU+orW2ga8CD69wvf8T+GMgt47rE0JE4DHJ5hcFg7IKE3GrvRG3EOj6eG41euizJKDXRvUzuaUWoio8olG9v712u4uEn0QDi+Yi0/HJqt12rblrwilm9fc1G5xMSlZfiHq0lkB/M1C+K+lUeF6RUuoGYIvW+vvruDYhRASWZ/Pv38DZfChk9H1A05+p5kZcMMum4rpedUp3ltbil4I75Ven647vx9F+kEFWysEwslW5XQCFKivf8TbshlyAbltz1VxZVr9HsvpC1KOL3oyrlDKAPwH+xzVc93NKqZeVUi9PzU1d7E0LISrgx2V98y9d8OjfwNl8R9mMJ0fCbbiKvtzmc37PerKsuWL5SHVaa0Ixg66jyegHbUSbw2X4Ve28A6XBWT7+ht2QW3D3eCmr/7Zk9YWoS2sJ9IeA8jTWYHheQQtwFfAzpdQx4DbgkZU25Gqt/1JrfZPW+qbO1s4LX7UQoiKGE4q3WoxSbf7Yxs7mn06dwg//67S7ifuJqt5+qXRFV7F0p+y0UTYYrEo1+rB8Om61A/3NxUD/VPpoVW+71vTYmivLsvo/kay+EHVnLYH+S8AepdQOpVQc+BTwSOFCrfWs1rpba71da70d+DnwkNb65YqsWAhRMY+XZfMvm3fpz2/cbD7AyfQxADxcBjJbq377pc2oqnqbcctr9NXK51eaV+yl72OZ1e+8Q3jrp5NDOMqu6u3XmrvLavXfajY4JVl9IerKOQN9rbUL/D7wI+Ad4Ota671KqT9SSj1U6QUKIapjeTb/vvGN2Te/3FDqOKDx8dmc2Vb12y8vW6lWoL+kRr+s646q4qbY0u9a/c47KS9Np90NKFxcTqdOVfX2a01vXnP5fCmr/yPJ6gtRV9Y0CUNr/Sjw6LLz/nCV69578csSQlTbY2XZ/Mslm49Gcyp1vDgoa3NVJ+KCUnkMZaPRaG3i+6kq3XJ51x1jpbMrznVbwjcZHmaVM/oA/ZlBJuJjeHicSh1na2Zn1ddQS9475vBOi4kL7G0OpuVuz1Znc7YQ4uLIZFwhBEMJxduSzV9iKj5B1szgo0l6Kdrtrqrefimb7+M5hVKWKljSdKfsNqtaulM+NKu6NfoA/dktYZ2+Vyzf2sh6yvrqO8APe60NOmFAiPojgb4Qgsd6g2y+TZDN79vg2XyAk+FGTB+PzdmtVR2UBeX1+VUelrWkRj+aeuzS0KzqT8cF2JwJ7m8NnEwd2bCDs8rdO+5gEtTqv5s2ONgk4YMQ9UAeqUJscMdTir3NQTbfQ7L5BadSxwHw8SPZiGstmYpbrdaawe0VP5fX6OvqlWqUv7Gpdo0+BIOzkl5QKpUxF5mKT1R9DbWmw9HcMO1KVl+IOiOBvhAbmAYeLcvmXz0n2fyCofRxwEfjszkbxUbcUkbfq2Kgv2Qzbnkf/Sr+WXjFPvoa01wkKCirHoWiP7sFAwMPr3h0Z6O7e8IlroOEwLGkwd4WCSGEqHXyKBViA3u3yeBI2sAjmP16/5hk8wGyZoaJ+Bg+GoVBX3ag6mswzfmwZETjem3Vu+ElpTtRvUQYeF5T2N9TY1kLVV/BQGZLqZ9+eHRno2t1NTeFWf2gA4+FbMkVorZJoC/EBrU8m3/ztEOnI9l8KLTVBA+f3lw/lq5+S8Hy2vTq1uiXnV6yGbe6IV2ULTahfEOuDM4q954Jh4QfJAaGEgZvtJrn/B4hRHQk0Bdig3qj1WQ4qfAAQ2vunZBsfsGp1DEAfFw2R1CfD4QTYYOou5qlO0vaa5Zn9KvYdQcKv3M4NCuCQH9TdqC4AXs8PkrWzFR9DbWoyYPbp5xSVr/Xwot6UUKIVUmgL8QG5BFspoPgxfqOSZcWifOLTqWjHZQFyzfjVi+jv2qNfpWVNiBrLLP6LTZjOkZvrh+FwsMvHuURcPukS9rX+MBoTPFSu2T1hahVEugLsQG92GEyGQuy+TFf855JifILPDyGUyeLg7IGqjwoK+BjmoWMvqqJ9pqqyhn94HcOavSjKN2BoE7fQOHjFo/yCEj6cOeEi0mQKHi8x8KJ7j2hEOIsJNAXYoOxFTzeXarNv2fCISU76orGkqdxlIOPT6vTTrPbWvU1WNZ8WDSi8dwm1jjEfH0sqdGPrnTHdVuLewQsa7aqt13Qn9mCwsDHl8FZy9wy5dLsBdvFJy3Fs51V/BsVQqyZBPpCbDDPdlrMWUHDwrSruW1KKmzLnQoDOh8vomx+eWCrcZ1q1ucvpaMs3XEKb7A0ljUTyRrK7/9TqWN4Uo1eFNdw93hZVr/bIiMVPELUHAn0hdhAMgY80R0MurGB+8YdYtJoZ4mglaLGw2cwsz2SNZjFQN8PMttVtGQw1pKBWdXO6Jfe4ESxGReg2W2lxWkDFLayGUuejmQdterGaZcuO8jqLxilI4VCiNohgb4QG8gT3RZZI8jmt9s+N8xIhnK5U+lj6PC/gUxUGf3SsKxqB/qr1ehXv3SnuVhGFHQgimYfSX92MGyz6RWP9oiACdw/5hSz+s92mkzEpFhfiFoigb4QG8RUTPFMZymb/8B48AItSuasGeasWXw0MT9Od35TJOuwrNnSsCy3PZI1AGBE+RJhlQ3N8iMZmgUwkNla7LxzUjbknuGyeY+tWR8F5Ch18xJC1AYJ9IXYIH7Qa+EqcICBnM9Vc7IDd7kT4WAkD4/+7CBGRE+RVqy0+TSyjP7yDH6VB2ZB+e/uR7YhtzAhFzTH04fDN2CiQAEPjAZ99R3gtVaT4ynJ6gtRKyTQF2IDOJ5SvN5q4hO8GH9wxEZeis90Mgz0fbzI6vOhULoTBJSlTanVUV6LryPN6Bfq9AsZ/WgC/e78JuJ+Ag3MW7NMxycjWUct25L1uXLOQxEcLfzeppi8HRKiRkigL0SD08B3N5XaaV4+77ItKy/DKznRdBiNj8Zna2ZHZOsoD2rdqk7FXUov2Yxb/dtf0nknFk2gb2AwkNmKgYGHx4n0kUjWUeveN+YQIxjGdzhl8HaLhBdC1AJ5JArR4N5oNTmeMoLGgFrzgVEZjrWSRXOBifg4Go2hLfqymyNZh1I2ppEFNGgjqFOvpiVdd9TK51dJ0Es/eJkyzWgCfYDNmW1hnb4E+qvpdDQ3T7kYBAmFR3tj0oxUiBoggb4QDcxR8Gi4Oc4Gbpty6XQkm7+Sk2EA5+HRl9uMpaNpFVjquOOHPfSrXGRV9uexpHQn6ox+RL30AQbDQF+HdfpiZXeHw/d8YDSu+HmHbPcXImoS6AvRwJ7ptJiOKVwg7mnumZBs/mqON5UC/S2LtVC2E0FrzeUibK8JtdFLH6A320/MD974TcemmIlNRbaWWpb24K6JoJtXHnisJ2jnK4SIjjwEhWhQCyb8pGw41v3jQbZNrCzYiBvU52+JdCNu2bAsp63qt69WKd2p9sAsWNpxKKoafQATk/7sFgwMfLzipm1xplumXNqcoDfRjKn4SY+02xQiShLoC9GgftwTIx8Ox+q0fW6alorZ1WTNDGOJEXw0CoP+iAZlAVix8mFZ0W3EhaWbcaPgeWm0NgGFYWRQKh/ZWpbW6Uugv5qYXjpE66lOi7G49PgSIioS6AvRgEYSQX1sIZv/4Kgtw7HO4mTqKBqNh09vrp+4jke2ltKwLHC99uovoDxzb0RbugMqeLOjIajTj658pxDo+/gcTx+KbB314Kq5pUO0/rlP2m0KERUJ9IVoMIV2moUgf+eixyUL8jJ7NieaCoOy3Ejr86FQuhNND30A5Zf10V/SXjOavyHPKRzViK7FJkBfdgBDB2+XJ+PjLET4pqPWKeDB00FywQX2Nxnsa5ZwQ4goyCNPiAazt8Xg3aagnaYLPDjqyHCscwhaJurI6/Nh6aZTJ+LSnSWbcSPKyQZ1+tEOzQKwdIz+7CCq2E9fynfOpj+vuWk6aLeZBx7pi+HIE5EQVSeBvhANxFHwSNlwrFumHfryks0/m7yRYyQ5hI8PKAYyWyNcjV4SzHqRdN0pn4yrVjq7qpxioK8jDfQhKN8xpJ/+mr133CHta3xgLKZ4qks25gpRbRLoC9FAfta1tJ3m+8alnea5nEodD3P5Pj25PpJ+KrK1GGYGpVzAx/fi+H6i+ovwy7ruLOmjH1FG32kNjyxE20sfYHBR6vTPR9qD9465xY25P+m2mJFYX4iqkkBfiAYxGVM8EbbTzAPvH3NIS6OdcyoNynIZzGyLdC2xYiCrI2mtuZxWy2otomixWfx3UJEH+n3ZQVRYCDeWGCFjLka6nnpw07RLX95HAxkF398UzSA6ITYqCfSFaBDf2xTUwDrAQM7nxhmJ8tciGJQVZPS3ZnZGuhYrNh2e8nHd6AN9lKqBoVmlfwcr4kFVcR1nU3ZzWZ2+lO+ciwE8OFJqt/lqq8mRtIQeQlSLPNqEaAAHmgzebjHwCQL9D43Y8uBeA0fZnE6dwifIOEZbn790Kq7jtEeyBlVeuoMi6p3cjlM+HXceiPYN7ObM1mKdvgzOWpttGZ+r5jwMgmD/O30WMrtPiOqQWECIOuco+E5fcDg8D1w367I1Kxtw12IodRwPDx+fLruHtNcU6XpisZmwh77GdTsiXQsACnQx0tegowjPLDy3OdwM7EXaSx9gMLO9WKd/TOr01+yBUYeEDt6mnUoYPNcpkz2EqAYJ9IWoc090W0zEgw24MV/zC6NO1EuqG8eagkAt6J8fbdkOENagB4G+E0EPfaBUnqN1UKOvFIW0voqq806xTl9jxWaiWURoc2ZrsU5/JDkkdfpr1OZq7poISnjywA97YszKxlwhKk4CfSHq2Hhc8UTX0g24zVKav2ZHmw9BOBF3++LuqJdTFsSqyGr0lw7GWlajH5GlvfRnIl1L3E+Em3KDOv3Cm0VxbrdPunTbwTGreQP+uS+6CdRCbBQS6AtRpzTwzf4YbtkG3JumJcpfq5yR4XQyqM9XKAYXo+24s7xPfC103cFYFuT70VRWB/8WQYvNWITTcQu2Lu4s1ulLoL92loYPhxNzHeCNFoP9MjFXiIqSR5gQderVNpPD6dIE3I8Mywbc83Gs6TAajYfHptxApP3zIeihbyiHSHvow7LOOmpZi81oanecYi99sKxoO+8AbFncgUKh8TnSdCDq5dSV7Rmf62a94sTcb/XFsKM/aCREw5K4QIg6lDGDdpoQdLG4bcqhXybgnpdSfb7H9oVdEa9mpR76UUU/y/6OaqF0p9iBKPqhWQD92c1YOoYGpmOTzMQmo15SXXn/qE2TF0zMHY8pHu+RYn0hKkUCfSHq0Pd7YyyYweHvJldz/5hMwD1fx5oOAn7QP38x+kC/FMBG3EO/LM7X5aU7GpQf0XRct7AxOfqhWQCmthhc3IaBgYvHUSnfOS9pD+4fK23M/VmXxUgi+jeUQjQiCfSFqDMH0wYvtptogmz+L47YxCWZf17mrBkm4xP4aCxtMZDdEvWSyjbi6rIuM9UXbMYt/EGFm3GLMVjUgT5YsTmogS7sWxd3hm02pU7/Qlw/47E166OAHPD1gXgN3KtCNB4J9IWoI3kF3xgo9cy/bN7l8nl5eTxfR5sOAkHZzkBmG5aORbyiYFhWTfTQXzb9VtdA6Y7WFp7bVDO99OHMOn0d0ZugeqWAXxwOkhQucCypeEZ66wux7iTQF6KO/LjXYioW9My3fM1DI9Iz/0Isqc+vgbIdgFhsmkLGPNqOO6WAVaulLxEqoq47UP5vEn2LTYDu/CZSXhoNLJoLjCaGo15S3emxNXeX9db/QW+MiVj0byyFaCQS6AtRJ06kFE93lnrmPzhq0yKl+edNoznWfBAd1udvq5FAv9RaU+O4EQ3LgjMy+ks240aYtHbKe+nHpqNbSEih2LK4A6PQT7/5YNRLqkt3Trj05X00kAmPWMqxESHWjwT6QtQBV8E/9ceLQf7ORY8bZqRk50JMJEZZMBfw0SS9FD25vqiXxNKJryrSjP6S6beKmui6A4XOO7XTSx9KdfqebMi9YCbw0LCNRdBc4N20wQvtUsIjxHqRQF+IOvDT7qArhUewWfIjp53Imi/Wu1J9vsvWTJCRjZppLi7roZ+McDVlkf6S0h0NOro3l7XWSx9KgT5ojqcP4So5xHYhBnKaOyZdDIIGA9/bFGNGOm4KsS6if4UTQpzVqaTiJ91ByU4OeGDMocORg9sXKqjPDwZlbVvcHfVyALCsQimKLstcR6QGN+MCuE5pg7IVq41Av9VppzW8v/Iqz1DqeNRLqlv3jjt020Fv/XkDvjEQlxIeIdaBBPpC1DBXwdfCtnM2sCXrcduUF/Wy6paHx4n0EXx8NJqtizujXhJQ2IgL4OM4EXbcgaWB/rLSHbW8fr+KnOLQLIjVSKAP5eU7rrTZvAgxDQ+dLpXw7GuSEh4h1oME+kLUsB/1lEp20JqPDTvyoL0Ip1MnyRt5fHxanXba7c6olwSUZ6ijD/TLa/SXd905Y6NuFbluC+jgTYdpLqCUHdlaym1d2ImBgY/PkaZ3o15OXduW8bltqlTC891NMSalC48QF0ViBiFq1LGUwZNdpZKdD4w6dNlyMPtiHGreDwT1+dsWd4X11dGLxaaLfdgj7aEPLG+tc0awHxkjGCSmAfyyoyDR2pLZUTw9lDpOxlyMcDX1774xh96whGfBgK9LFx4hLkqtPIMLIcrkFXx1c2xJl51bpqVk52IFgX7QWHPXwqVRL6eo1ENf49jt0S5mSemOWrpdIMKMPhAe7Qg2v9ZCi02AlJemLzsIGLi4ktW/SDENHxmyiRGU8BxMGzwtg7SEuGAS6AtRgx4ND1m7gOlrPjosXXYu1rw1y2hyGB8fhVkz9flQXnOultSiR6IsmF++ETfKGn0otNgE8IlZtRHoA+xY2IMRttk8HB41Ehduc87nromgTDEPPNobYzQuz4BCXAgJ9IWoMfuaDZ7rMIvZ/A+N2LS5cvD6Yh1uPgAEG3IHF7cR9xMRryiglINpLhK0r1S4UQ7LKlqtxWa0HKeNUka/djbk7ljYg0Kh8TnYvA8fmXFxse6acBnIBf+OGQX/MBjHlVhfiPNWO8/gQgjmTfj6QBwI6vIvm3e5flaChvUQBPpBW80dC5dEvZwia0nHnTaiflpWNV260x52AdJYsclI11KuJ9dH2mtCA4vmIsOpk1Evqe5ZGn5p2CauwQVOJRQ/6JXm+kKcLwn0hagRGvjq5jiLZlCbmnY1vySDsdZFMLn0XXRYn7+zhgL9UtmOLitNidDy9ppLLov2TWepl76qmc24AArF9oU9YfcdV8p31klvXvP+UQeTIPHxZKfFgSYJW4Q4H/KIEaJGPN1p8m6TgUfQWu7jQ3nSsv92XZxKHyNv5PHwaHXa6bS7o15SUanW3I++Ph+WZe1VDXXdKZTuAGhi1gzUUInMjvk9YT99r9jdSVy8m6ddLlnwUASljF/bHGNB9uYKsWa18wwuxAY2lFD8oDfosmMDd0467MpIXf56KbXV9Ni5cGnNtNWEoHRHFzruOLXQ1792N+NqHcdz00E/feViWXORrqfc1sWgn74GhpMnWDDno15SQ1DAw8M2rZ7GA6ZMxT/J1Fwh1kwCfSEillfwlXCjmQ1syvncP+5GvayGcrjYVtNjVw2V7UChdCfsoR/1VFyWDswK6uHLgn0/+vCqNFDMr6kNuQk/yUBmKwpDuu+ssyYvaLlpEjxHvt1s8Ky03BRiTSTQFyJCGvhWf4yxeNBKE6355SEbK/p4qmHMxKYYT4zi42Noi8HFHef+piqKxWaKp2uvdAe0UQj0a+OP0i123qmdoVkF25e02TwQ9XIayu7F0tTcPMHU3JPJ2jkyJ0StkkBfiAi92G7yapuJT/Di9dBpm26ZfruujjQHA4xcPLZkthPTsYhXVM4Pu+4USnfazvUNVaBLMb06YzdutRdzhuDNUNB5J1ZDGX0otdn08TncvB8P2WSznu4fc9ic89FAFvjyYJyMRDFCnJU8RISIyHBC8c99QdCZB66blVaalXCo+R2CtpouO+drZxougGXNovABjec2o3UN9PY/Y2BWKdhXtVK6E74BsazaabEJ0JXvocVpRaHIGIsMpY9HvaSGYmn4xCmbtB+03ByPKb6+Wer1hTgbCfSFiEDOgL8fjOOEdfldeZ+HTjtRL6vhuMrhWNMhfHw0mh2Le6Je0hKxeCFQ9XHs6OvzYVmNPoBRW+URjl3asFz696sNhTabQfcdV7rvVECHo3l4OKjXzwNvNRs8LfX6QqxKAn0hqkwD3+yPMV6oy/c1nz5lE5O01Lo7nj6Coxx8fDrsLjrsrqiXtEQsVh7o18jalg/MWnphVZeyEqdsw3Lw71dbR8F2hP30PXwONu+NejkN6fJ5j1vL6vW/tynG8VRtvSEVolZIoC9ElT3dafJ6a1ld/ohNj9TlV8SB1rcBcHHZtVBbZTtQHuhrbKdGAn2WBvq6ULqjiXwyLoDvJ8MWm6CUU1MtNgEGF3dg6mCC61hihMn4eMQrakwPjDkMLqvXn5fEvhBnkEBfiCo6lDb4/qagX34euGnG5Tqpy68IH593W94OZ+H67Jm7MuolnSEWn0SHNfq10UOfpTX6qCWlO1H30S8ob7EZi09Eupbl4jrOtsVdGBi4uLzbIln9SijU6zeH/fUnLMWXtwRtioUQJRLoC1El05biHwbjxUz+QNbjQyNSl18pp9LHWDQX8fBJe830ZwejXtIZ4rFCkKqW1J5HaWkf/WUX1kqgb3dSarFZW513AHbPXV6s03+n9c2ol9Ow2h3Nx4ZsLIK9TodSBt/bVEtdtYSIngT6QlSBo+DvtsRZMMEBkp7m06cc6ZdfQYVMqofLnrnLMWrs6a5UdqJBqxpprQnLS3fOjPajFxz9KLTYrK2MPpTq9DUwlDzOnDUT9ZIa1q5Fn/vHHEwgBzzTYfJym9TwCFFQW698QjQgDXy7P8appMIjCPQ/dSpPqytRfqVoNAda3iZoq+mxZ/6KqJd0hlIm2g+DfCvK5ZTopSl9Xd51p0Yy+rZdarFZi4F+ykuzZXFHcUqulO9U1h2TLlfMexgEwf43+mWYlhAFEugLUWFPdlm8FA7FygEfHLHZnqmNgKlRjSaHmIlN4+GT8JNsyWyPeklnKN+IWytlO8AKffRLaqdGv6zFZg0G+gC75i/DQOHisr/1raiX09AU8JEhm015Hx/IKPjSljizNfLeWYgoSaAvRAXtazZ4tNcqbr69btbl1mmZlllp+1uCbjvBkKxLil1QasmSHvq1shGXZcG8Kv4vrOipkUDfbi8uxYrNolTt7XXZPX8ZCoVGcyx9iIy5GPWSGlpcwydP2TT7Gpdgc+7fbklgS2JfbHAS6AtRIcMJxVfCqY15YDDr8fBppwYrnhtP0FYzKNu5ZL72uu1AkNHXQc9KHKc76uWsQqENo9RPvzbifMDCddvC9XhYsemoF3SGJreF/uwWFAoXj4PN+6JeUsPrsjWfOGkTI9iceyKp+KpMzhUbnAT6QlTAvAl/uyVO3ghecFocn185acvm2yqYiI8xER/Dx8fUJtsXamsabkFQuhMG+jVaunPGwKwaKd0BsO3yDbm1NSG3YNf8peHwLJf94UwHUVk7Mz4fHLGLm3PfaDH4UU/tHdETolok0BdindlhfehMTOEAytf82sk8TVKxUxXlQ7J2LOwhpmuz3V6pdAfssmmvkTujdKfsyxoK9Mt76cdrrJd+QaHNpo/P4ab95I1c1EvaEG6aLk3OzQGPd1u8Ip14xAa1pkBfKfUBpdQBpdQhpdS/XeHy/0EptU8p9aZS6idKqW3rv1Qhap8PfGUwzvGUgUeQzf/loTyb8hEvbAMpddtx2VOjZTuGuYhpZAEf7cfw3Jaol1Rm2cCsJVn9Ggr07U5QBkFGvzanz7Y7nXTnN6FQOMrmcPOBqJe0YfzCqMOexSC7kgO+PhDj3SbJbYqN55x/9UopE/gz4EHgCuDTSqnlvepeA27SWl8DfAP49+u9UCFqnQa+0xdjb7NR7LDzoRGbSxdqJzhqdHPWDKeTp/DxURjsnL8k6iWtKF4MTDW23UUt9apfOjBrWaDv187fsm2X9jXE4rUZ6APsnrusOCX3QIuU71SLAXz8lE1/oRMP8HeDcYYStfNYE6Ia1vL29hbgkNb6iNbaBr4KPFx+Ba31E1rrTPjlz4HaG0EpRIX9tNvi+Q4TTRDkv2fS4TbpsFNV+1rfAIKynS2LO0n6qYhXtLJ4Yiw85eHkeyJdy3LK84qJe20YaKNQ8qBR2o9sXcsFb5AC8fgYtXS0odzu+VL5zrvNe7GVHN6rlqQPv3LCptPVeMC8AX+9LcFUTIJ9sXGsJdDfDJws+/pUeN5qPgP84GIWJUS9eaXN5Ic9VjHIv3LO5f1jbtTL2nDebnuNQtnO5XNXR72cVZV6v2tsu7YCffzSm1NtmkHXnZBya+dv2vea8L0UaFDKxrJmo17SirryvXTa3SgUOSPLuy3Sfaea2lzNr57I0+RrHGDKhL/eGicjJftig1jXgjWl1K8BNwH/YZXLP6eUelkp9fLU3NRKVxGi7uxrNvj6QLDhMwdsy3h8bFjaaFbbRHyU0eQwPj6GttgzV3vTcAviiTE0PqCxa6y1pvI8CtlxbZhoqxQRKb92MvoAdr7wb+eHWf3ao1BcOnt1sXzn7bZXo17ShtOb13zqpE1ca2xgOK74my1x8vIkLTaAtQT6Q8CWsq8Hw/OWUErdD/xvwENa6xWPTWqt/1JrfZPW+qbO1hpqJyfEBTqcNvj7wXixJr8r7/NpaaMZiUIA5eKya+ESEn4y4hWtrlSjr8qC1doQBPqBJRl9rZdcVgtK+xv8mq7Tv2z26lL3neb9LJoLUS9pw9me8fnIsINJMNfkSMrgi1viOBLsiwa3lkD/JWCPUmqHUioOfAp4pPwKSqnrgf9GEOTXZlpFiHV2Mqn42/CFIk/QK/+3TtikaivpuSFoNHvbXqdYtjN7bdRLWpVhZDDNDEHHHTMY/FRDlgTzS2r0qcFAv7us807tvvS0OR3F4VkODu+Ee0lEdV095/HBEafYY/9Ak8FXNgeJGiEa1TkDfa21C/w+8CPgHeDrWuu9Sqk/Uko9FF7tPwDNwD8ppV5XSj2yyo8ToiGMJBRf2JooDsRKuJrfOW7T6koqPwpDqePMxKbx8In7SXYu1Ga3HYB4vLzjTje11HEHVsjomyaFNdZeoF/YkKvL/l1r02WzV4XlO164l0RE4ZZpl/vGnWKP/TdbgtJLeeYWjWpN4+K01o8Cjy477w/LTt+/zusSomaNxxV/tTVBxgQHMD3Nb5/I0eFEvbKNq1S243Dl3PWYunYnYZZqyWuv4w4srcPXhhEG+iG/1gL9QtmTKuu8U1tvnAoumbuKn/X9EA+Hk6mjTMcm6XC6zv2NYt3dNeGSNxTPdFlkgZfaTGI+fHRE9laJxiPTI4Q4DxNxxX/blmDOCoJ8fM1vnZCBWFHy8NjX+ibg4+FxRQ2X7UB5z3e9pBd8rVBeqbNOUKNfu6U7vpfG95JB5x0jX7OddwBSXprtC3tQGHh47JWsfmQUcP+Yw40zpem5z3eYfKdPMvui8UigL8QaTcQVf7EtwWwY5Pta8+sn82zOyUtDlI40HyBrZnDxaHZb2Zyp7cHc8fh4WcedWszoLy3doYY344Iqe7NU2xtyoVC+o3BxeavtFbSElZFRwIdPO1w766GALPCsBPuiAUmgL8QarBTk/8aJPNsz8pIQtUJm1MXl8tlrUDV+8L1US66WDH2qFUtq9A1zSemOqrHSHVjaeadWW2wW7Jy/jLgfR6OZiI8xkjyjgZ2oIgP4yLDN1XNBsJ8jCPb/WYJ90UAk0BfiHMbjiv+2Lb40k38izw4J8iOXN3IcaNmLj4ePX/NlO0HHnUVABx13nNrquIPvB2XuGlBqha47tTMwqyBoT6oINuSORr2cs4rpGLvmL8fAwMGR8p0aYAAfHQqCfQiC/Wcksy8aiAT6QpzFcELx+e0JZixVDPJ/7USenRLk14T9LW/hKhcPn658Lz35vqiXdFaJxOnwlI+d76HWnoJL2XxdzOQvyei7NZjRz/cGb0qAeHwk4tWc22Xh8CwPj7fbXsWj9v5NN5rlwX6hjOfrAzFpvSnqXm29yghRQ06kFH+xPcGCyZIgf5cE+TXjjY6XAI2Ly5Wz10W9nHOKJwqBqEe+Bt+ULC/bAdBm6WVC+TWY0bd7i6eDsqjaW2O5rYs7aXKbAZg1ZzjYsi/iFQlYGuwXavZfajP5+8E4bm1XAwpxVhLoC7GCw2mDv9yaIBv2yVe+5rePS5BfSybj45xMHcPHRwFXzlwf9ZLOKZ4YDTdg6iATXWOKgb4uZfJruesOgO8nghIoDSin5vvpGxhcOXM9JgYuLq92/DzqJYlQIdi/ccYtBvtvtBh8aVAm6Ir6JYG+EMu81WLwha3x4jAsy9N85liOrVkJ8mvJG+0vAcEm3J3zl9DkNUe8onNLxEcgrPzN25uiXcwKSpttNTrstlP4DKC82ixkyOd7KW7ITdR++c5VMzegMPDxOdy0n5nYZNRLEiED+MXTDrdPlYL9vc0Gf7ktTsY8xzcLUYMk0BeizHMdJl8OD9XmCSbefvZYnn7pk19TPDzebH+JoHe+yzUzN0W9pHNSyiEWnyBIl6uwRr+2LJ+KW/55+eW1xC4L9BOJ2t6QC9DqtLN9YXexp/7r7S9GvSRRRgG/MOpw70Rpgu7hlMHntyeYtiS1L+qLBPpCEORYf9Bj8e2+YPNVDmixfT53LE+PLZn8WnOwZR+L5iIuHk1uC9sX9kS9pHOKxcdRaMDHcdrROhH1ks60vIc+9RHo55dsyD19jmvXhqtmbiz21H+940XZlFtjFPDecZcHRx1MgteEobjiz3YkOJ2QYF/UDwn0xYbnKvjaQIyfdltogif0vqzHvzqWp8ORIL8WBXXNwSbcq2aux6iDp7JEsSOMX5P1+bB8M26hdKesXqEG22sCS/49g9Kd2n/c7py/hGa3BY1m1pyVTbk16rYpl48P2cS1Jg9MWPBn2xMcTNf+c44QIIG+2OAWTfirrXFeaTPxCeoxdy14/M5xm7Qk2GrSZHyco00H8fHRaK6ZuTnqJa1JqXbcJ5+vvfp8WN5e0wpO1UFG33Vb8b3gCIlhZLCs2YhXdG6FTbkGBi4Or3e8EPWSxCqumvP4tRM2aV9jA/MGfGFbnJ+3S9G+qH0S6IsNazSu+C87EhxJG3gEQf51My6/dtImXvsJwQ3rtbBLiYvLzoVLaHXao13QGiUSI2h8go47tddaE5Z23aGwCXfJZtzaDPRBBVl9DfWyIReCTblGuCn3kGzKrWk7Mj6/fSxPu6txgAzwjf4Y391kSa99UdMk0Bcb0rtNBn+6I8FUTOESlOu8f8zml0478qCoYY6yeaP9ZTQ+Li7XT90W9ZLWSBMv2ySat2tvIy4sDfT9MJPvh5n9JZfXoCWdd+pgcBaUNuUWJuXKptza1pfX/IujeQZzfnEv15OdFl/cEicnLxyiRsmfpthQNPCzLosvbA2emG3A05pPn8pz12QwKEXUrr1tr5Mzsnh4tDkdbFvcFfWS1iQWm8RQNuDjeyk8tyXqJa1I+WW5yULJTl1k9AnKoZRB0HlnOOrlrNlVMzeiUHjhplxX1eY+CBFoczW/fSzPlfMemlL7zf+6I8F4XF5BRO2RQF9sGHkF/7A5xvd7rWI2JulqPnc0xxXzcvC11mk0L3Y+DWgcXK6bvgVVJ2/NSoGnTy7bDzW6blXcbKvLJuOW1ej7tRzoF8qhFInkKephQy4UNuW2ogkm5b7T+kbUSxLnENfwy6ds7pko9dofjiv+844Eb7dIWCVqi/xFig1hIq740x0J3mg1i0H+QNbjd4/mpEd+nTiePsR4YhQPH8u3uHr6xqiXtGZB4Angkc9tjnQtZ1OvffQBHLsL348DYJrzWNZcxCtaGwOD66ZuwcTEweWFzqfC6cmilingfeMOHxu2SYQdeeYN+NJgnB/2SN2+qB0S6IuG90aLwX/akWAkEdTjZ4Gbph1+57hNixwlrxsvdj0DgIPNlbPXk/RTEa9o7RLJoeJG3Hy+TgL9Qka/Tkp3QJHP9RU35CYSp871DTXjqpkbsHQMjc/p5ClOpI9EvSSxRtfMenzmaJ4ux8chSCI93h2Uh85LUx5RAyTQFw3LUfCtvhh/PxgnX1aP/9HhPL844mJJ0qxuTMbHOdj8Dj4ePj43Tt0e9ZLOg0siXtiIq8jlarPjDpRvxtUrZ/T92s5T5nOFsiiPRLJ+6vRTXporZq4NN+XavNj1dNRLEuehP6/53NE8lyx6xTbN+5sM/uOupPTbF5GTv0DRkMbjiv+6I8HzHWZxw1ST4/PZYzmun63tYEWc6YWup4CgpeauhUvpsLsiXtHaJRKjKOUBHq7dhu+no17Sqspr8EsDs8oy+m5tHwLL5/rDDbmQSJyMeDXn57qpWzEw8PA50Pw2E/GxqJckzkPag189YXPvRNC5LQdMmfBX2+L8SEp5RIQk0BcNRQPPdZj8p53BmHKPoN/x5XMuv3ckz0Au4gWK87ZgzfFWW6ml5s2T74l6SeclkRwKT/nkcgORruVclFcKR+oxo5/L9YendPjvXtvrLddl97B9YU+x1ebPu56MekniPBnAfeMuv34iT6sXDNfKAo91W3x+e5wJ6cojIiCBvmgYsxb89dY43+6LkVdBqY6jNb84YvPJIYdk/bzmizIvdj6DqzxcXPqzW9ic2Rb1ks5LIjEUbq70a3ojLgD+mZtxUQaoMEDx/eCjRnleC57bDFqhlE08Ph71ks7LzRPvCSflurzZ/hJz1kzUSxIXYNeiz+8ezrFn0S+W8hxJGfzHnQmeC48yC1EtEuiLuqeB11pN/t9dSQ40GcWuOm22z786mueWaemPX69yRoZXO54HfBwcbp24u25aahYEmeXgpT2X7z/7lSO2UtcdlCor39F1ktUP6/QTQ+e6ek3ZnN1Kf3YLCoO81OrXtWYPfu1EngfGHUyC16QFBd/ui/GFrXFmrXP9BCHWhwT6oq4tmvD3m2N8ZXOMrAEOQfbk9kmH/+5Inr685E7q2cudz5M38ji4dNk97Fq4NOolnRfDyBKPTQIatMLO1+5GXFi+GbcUiQRBv1p6nRpV2pDrl7U1rR83T9yJgcLD4dX251k0F6JekrhABnDXhMvnjuToz/vF16f9TQb/764kr7VKdl9UngT6oi5p4PUwi/9m2Bs/C6Qdn88cz/GBMZeYPIPWtZyRDTfhhrX5E3fVXTY/mTwRnvLJ53vRurbTeMHArOCBU2ivWTytgotKQ7VqUy67OSw10iRTx6JeznnbsXAJ3flNgCJjZIob0UX96s9rPns0z92TpQFbcwZ8ZXOML22JM1PbTwuizkmgL+rOREzxV1vj/MPmGPNmKYt//YzL7x/Jsz0jEX4jeLnzOXJGFhePNqeDK2avjXpJ5y2ZKgT6Hrk62FuwpCynrNuONuullz7k8/1oHRyBiMUmMOssI65Q3DZ+T3FT7ssdz0hWvwHENDww5vDbx/N0O35xo+5bzQb/z64kT3WadbR1XNQTCfRF3XAV/KTb4k92JTgY1uJngYSr+bWTOT5y2iEhz5QNoTyb72Bz2/i9GHX4dJVMHSsOysrmtka9nHMqb59Z3m2ndFrX9GZcAK2toHxHA3gkk8ejXtJ52z1/OT35PpRk9RvOtozPvzqS59bp4LGWJZio+8imGP95R4KTyfo6ailqX/29cooN6Uja4D/tTPDDHgs77KiTBW6ZcvjXh3NcuiBZ/EbyYtfTpWy+3VmX2XylbBKJ0+FXmlx2MNL1rEWQ0Q9Ld8qy+CyZjlvbpTsA2ewWChtyk6n6C/SXZ/Vf6nyGBWsu6mWJdZLw4cMjDp85ll9Su38yGcx/+XZfsOdMiPUgf0qipk3GFF/eHOPPt8UZjQd98bNAV87nXx3N8aFRV7L4DWbBnOeFzlI2//aJOs3mJ0+i0ICHne/B91NRL+mclnTdKavR98s25pb32q9VuexgODhLk0wei3o5F2TX/GXFrH5WZXim+/GolyTW2dasz+eO5nn/uENca3IEr2/Pdpj8+91Jnu+Qch5x8erv1VNsCFkDvt9r8f/sShQ32+YAz9d8YNTmd4/m2ZyTLH4jeqbncWzDDjrt5Hu5vA6z+UBZJtkjl6n9sh0IA/3wYVVeusOS9pq1XaMPkMsOgFaAIp4YxTAyUS/pvCkUd469r5jVf6Xj50zFJ6Jellhnlg468/ze4TyXLnr4BEMep034Vl+MP9mV4ECThGriwslfj6gpPsFk2z/eneRnXRZOWZnO5XMu//pwnjumPPnDbVDTsUle63gBHfbNv2vsgbrM5kMQ6AeDsjTZXO1vxAWWBPG6fDNuIbuva38zLoDWCfL5TWV1+iejXtIF2b6wm8HMdhQGNnme7PlR1EsSFdLhaH71hM0vD9l0lm3WHY4rvrA1zhe2xhlJSP2+OH/1+QoqGo4G3mwx+JNdQX3iYthNJwP0Zj0+eyzHJ4cc2lzJ4jeyn2z6Pn4Y5G/ObGdnnfXNL1DKIZkoDMrS5LJbol7SmiwdmLW8j/6Z16ll9V6nD0FW/z1j92OG03Lfbn2VU3X6u4hzU8BVcx6/fzgo50n4QTlPDninyeBPdib4en+MqZgE/GLtJNAXkdLA3uZgNPiXB0t1+Bkg6fh8YijPvzxmszUrAX6jO54+zIGWt/HxcHG5d+z9ddc3vyCZPIFSHuDh2J14XlPUS1qb1TL6phn0pq+TjD4QvLkK6/RTqUNRL+eC9WcH2TN3RbGE58d9/xweKRKNKhaW8/zBoRy3zLhogux+Dnix3eTf707wzb6Y9N8XayJ/JiISGjjQbPCjnhinwnZiHkGZjulr3jfpcMekJ0OvNggfn8f6HgE0DjaXz15Lf51kwVeSShcCS4/M4s5I13I+DHflGv3Sxtz6qNEHyGa2gjZAecQTI5jmHJ7XGvWyLshdYw9wuOUAtsozlDzOW22vcM3sTVEvS1RYswe/eNrh5imXxzbFOdhkkAFiwPMdJi+3m9w643HfhENr7TfDEhGRQF9UlQb2thg80RXjRGppgG9ozR1TLndNuqTrI5YQ6+S1jhcYTZzGw8PQJnePPRD1ki5KuulQ2D/fJ5vZHfVy1q48o78k0K+fgVkFWsfJZgdJpY6C8kilD7Mwf33Uy7ogrU47N07ezovdT2Fj89NN3+eS+StJ1kEnJ3Hx+vKaXz+R52ja4Ke9FsdTJg4QU/BMh8mL7Sa3TnvcNeXS6Uh2TCwlgb6oCkfBq20mT3ZZjMfPDPBvnXa5Z8KlqT5iCLGOFsx5ftb7A0Bj43D7xD20uG1RL+uCmeYs8dgEGo3WZlgrXh+CID7so2+sNDCrfgJ9gExmB6nUccAjlT5Ut4E+wM0Td7Gv/Q1mrWlmzRme7P0RvzDykaiXJapoR8bnd47ZHGky+GmPxckw4HcUPN1p8lynyXWzHvdMugzkJeAXAQn0RUVlDPh5h8UzXRbzYaxQCPCV1tw843L3hEerbLLdsB7v+y45I4eDQ5vdzi2Td0W9pIuSbjocnvLIZbagdSzS9ZyPpZtxywP9MKOvdV0F+tnFndD9JADp9CGCvl71uTUtruPcPfp+Ht38DWxsXu54lmtmbqI/V/uD2MT6UcCuRZ+dizYHmw2e6IlxKmkEGX7glTaTV9tMLl30uWfCZXfGr9OdTmK9SKAvKuJ0QvF8h8WrbSZ5g3BsUNBJx/I1d0y73D4lAf5Gd7TpIHtbX8fHw8HhgZGHsOooMF5JKn0o3CzpkVmso7IdlmXrV2qvufw6Nc62u/HcZkxrFsPIkEgMkc/XzxGW5S6Zu5J97a9ztOkgNnm+3/8NfufoH9RtC1px4RRwyYLPnoU8h5sMnum2OJIOMvwWQZeeA01x+vNBSez1sx4JebndkCTQF+vGVfB2i8nzHSZH0sELjwZcggx+i6u5d8rh5mlPptkK8kaO7/f/E4UNuJfNXc22xV1RL+sieaRTRyi01cxk62cjLqye0Q+CfgXUV0YfFJnMdlpa3gTlkm46XNeBvkLx3tMf5OSuz2OrPMPJEzzf/TPunLgv6qWJiChg96LP7kWboaTBc10Wb7eaZAmOXZ1KKL7ZH+N7m2LcPONx+7RLry0R/0Yigb64aBMxxcvtJi92LC3PccOP3rzPnZMO18z5WPL8IkI/7X2U2dgMLi4xL8F7Rz4Y9ZIuWip1DMPIo/FxnRYcuyvqJZ0X5ZfegZdvwPWtspeKOum6U5BZ3EFL69uARzr9DtNT90a9pIvS7nRy+/h7eab3x9jYPN39Yy6Zv4KefF/USxMR25zz+cSQzX3jiuc7LV5rN8mpoEmxYwR1/M90muxe9Ll1xuPKeelstxFIoC8uSM6AN1tNXmlbmr0vlOdo4Io5l9umPbZJjaBY5mjTQV7t+Hk4AdfmgyOfoMlrjnpZF62p+Z3wlMviwrVQZ3/5yiv16Dszo1+4Tr0F+jvR2kQpj3jiNFZsEteprzdgy904eTuHWvcxnDxFVmX57sDX+c2jv4eJee5vFg2vy9Z8eMThfWMOb7RbvNhhMh43sAmCvgNNBoeaDFJ+jGtnPW6eddmS1XX2bCXWSgJ9sWY+cDht8Eq7yVutJnb4rFCevW9xNXdOu9w4I/X3YmUZc5FHBr5K0GXHZtf8ZVw2d3XUy1oHPk1N7xTbai4uXB71gs6bWrW9Znha108f/QKtE2QXd5BuOgDKo7npHWZm3hP1si6KgcEDww/zlR1/ia3ynEoe4+meH3Pv+INRL03UkJQPt0253DrlcqTJ4KUOk3daLHIEZT2OEfTj/3mHSa+tuWnG4/pZl3bpyd9QJNAXZ+UDR9MGb7aavNlqslB4vScI7J3wensWPG6Ycbls3peckliVRvP9gX9iwZrHxSXuJXng9MN1OwG3XDJ5AtPMoPHx3GZyuc1RL+m8LanRb4D2mgULC5eQbjoIeKSb99Z9oA/Qne/ljvH38nRYwvNs90/ZsXgJ2zL1vs9FrLdCp55diz6zlstr7Savt5tMxoIsvwmcjise7bV4tNdie9bn2jmPq+c82iTor3sS6Isz+MCxsuB+viy4L5Tm+EBP3uemGZdrZj2a6++1X0TglY7neLd5Hz4eNjYfHf5kQ5TsADQ17wtPuSzOX029le3g+4U9xKBU8BFa2nWn/l75g+5HJuCRSAxhWTO4bnvEq7p4N07ewYmmIxxrOkSePP+8+R/5zJF/0zCPKbH+2lzNvRPB3JoTaYPX203eajHJGcHj3QIOpwyOpQwe2RRjR8bnmjmPq+Yl6K9XEugLIKi5f7fJYF+LyTvNJpllwb0bfm7yNNfNBaU5fTmp6RNrdyp1nMf6vkuhZOeGqdvYuXBJ1MtaJ5qm5v3Fsp2FxcuiXtB5K2XqdZDBLw/0l2T0669llu8nyWS2Bb30lUdT8z5mZ+6IelkXTaF4//DD/P3Ov2DBnGfamuQ7m7/Cp0/8C2m5Kc5KAdsyPtsyPg8qh3daTd5oMznSZJILrxMDDqYNjqQNvtMXYzCnuWLe44p5j4G8vP7XCwn0NygNTMRVMbg/3GTglV1WHtynPc21cy5Xz/lszfjy8iHO26K5wLcGvxxm8vP05Pq4e+z9US9r3SRTR7HM+bBsJ02ujqbhFiwp21FLH+V6yWZch3q0uHAp6fQRwKO5+c2GCPQBmt1WPjD0Ub6z9R+wsTnSdIAne3/Ee8ekXl+sTVzDtbMe1856LJqwv8Xk7dYg6C882mPA8aTiVNLixz0W7a7m8nmfyxY8di360qO/hkmgv4EsmnCwyeTdJoODTQYzsdL7cZ9ScO8Dza7mmvmgRm+bBPfiIrjK4RtbvsS8NYeLi+XFefjUp+t+MFa51tZXw1MuC/PXUI/TV4uBvgYdW/rSUO8ZfQgC/e6ex1AqTzwxTDxxGjvfH/Wy1sX2xd3cOnEPP+9+gjx5nu36Cb25fq6cuy7qpYk60+TBjTMeN84EQf87rSZ7W0yOlgX9JjBpKZ7rCObmGMD2jM8liz57Fj0Gs7oOnwEblwT6DWzBDDbSHksbHEmbDCUVhTfdmiCgL3TLAejL+Vy+4HHZvEe/lOWIdaDRfL//G5xKHS9Ov/3o0KdoddqjXtq6MYwsTU2lsp35Og2uSt109JIMPizP6NfnhhzfT7C4cCnNLW+DcmlpeY3JBgn0AW4bv4fR5BBHmt/FJs93B75Gm9PBYHZb1EsTdarJg5umPW6a9sgZcKjZ5N1mgwMtJpmwpt8gCCQLJT4/7LFI+bAz47Nj0WdnxmMgp6VJR4Qk0G8QGpiKqTCoNziaNhiPqyWX+5SCex+I+5rdGZ89Cx6Xzvu0STtMsc6e7nmMt9tew8cjT457Rj/AjsU9US9rXTW3vIVSHhqPfK4P2+6NekkXZNWpuNR/152CublraG7dB7g0t7zJ1OQD6AY5sqRQfGDoo3xtx18zER8jqzL805Yv8pvHfo9Ouzvq5Yk6l/ThqjmPq+Y8fBxOpA0ONpscajY4nTCKSUQTcA14q9lgb3PwNiCuYWvGZ2fGZ3vGZ2tWSn2qSQL9OpUx4WTS4FTK4FTS4GTKYLbs3lwpsFfAYNYLxmUv+GzOSitMUTmvdDzP092PAz42NlfN3MiNU41RF12upeU1dNhwdn722qiXc+FW6aG//Ot6DvRz2S24ThtWbArDWCDdtJ/FhUaY4RBI+ikePvErfHXHF1gw55k1p/nHrV/gN4/+Hs1eS9TLEw2iUKqzPePzwFhQPXCkOdjrd6jJZM4qJRlNwFVBs49DTUbx+wdymsGsz5acz2DWZ1Nesv6VIoF+HVg0YThRCOoVp1IGU7GlhTU+pU20Xvi1gWZz1i8+ILdkfFL1WV4r6sze1tf5Ud93AE2OPFsWd3L/yIcbol9+uUTiJInECBof7ZssLFwZ9ZIu2NIe+stLd8peguuwvWaJYm72ajq7ngLl0tr2YkMF+gDtTicPnfwU39z2d+RVnonYKF/d9gV+9fi/JOWlo16eaEDNHlwz63HNrIfGYSKuON5kcCIVVBfMxErPJ2b4cTypOJk0+XkY3sc0DOR8BnOaLVmfgZxPj62xJPN/0STQryF5BWMJxemkwUjCYCShGEkaxT72BeXZ+kJgD0Epzrasz/aMx7ZMEOTH5EEiqmxf6xv88+Z/ROOTJ09vrp+HT34aUzfe0017x3PhKYeF+Svw/WSk67kYS9trnmUzrl/f2YL5uavp7HoOsEkmT5BInCSfr78uSWczkN3Kh059gke2fBUbm+HESb6y9a/41eOfJelLsC8qRwE9tqbHDmr7AWYtxYlwv+CJtMFoWamPEX64Co6kDI6lQHWYxct685q+vE9fXtOXCz53OrKH8Hw03itvjdPAdEwxES98BLX0YwnFdKy0WbZw3cLH8qDe1JpNec2WrMfmrM9ATtOTl53uIlrLg/w2u5OPnfgN4joe9dLWnRWbJF22CXdm5vaol3RRyrvusCyjX/61cus5ow+e18L8/BW0tLwJyqa94zlGRz4Z9bLW3c6FS3n/8Ef40cB3yJNnKHmcr2z7Ap868RnSXlPUyxMbSJuruTqctAuQNWA4ZTCcMhhKKoaSS7P+RtnHUEJxOmEuCewTfuHNhE9PXtNja7rs4AhAsr7zEBUhgf4600DWhGlLMR0PgveZmGIqZjARV0zGFY4683vKA/ryDwBLa3rzmoFcUFe/ORf8ccshLVFLXu34OT/s+zYaHzsM8j957Hcatlygvf15FKBxySzsxLF7ol7SRVnSXtNozBr9gpnpm2lpfRtwSTftIxabwHEab8PqFbPX4iuPx/ofIU+eU8ljfHn7n/Mrxz9Li9sW9fLEBpXyYdeiz67FUlS+YMLplMFQMngDMJJQTMeWJhwMSpt9M2Hpz/LMfosHPXmfLkfTYWs6nNJHu7Mxk6ES6J8HTVAvP2cp5sOPOasUzE/HFTOWIr/CX1IhJi/U0pcH84XLFNBl+2zKBRtT+vKa3rxPh70x/zhFfdBonul+nKd6HgN0MZP/yWO/Q5PXHPXyKsI052hpeSPM5rt1n82HpSU52loW6BuNFeg7dg+ZxR3hpFyXto5nmRh7OOplVcRVMzcA8Fj/d8mTZyQ+zJe2/xkfP/mb9OU3R7w6IQLNHuxZ8NmzUHoeyhswljAYSyhGk4rRRFDWnDGXhvflRwBmTJhNGxyGM94EGECrE5T+tDuaFlfT6mpaXcLPmhZHN1xHoA0d6LsqOISUMVX4EZzOmrBoKuZjinkzCOYXLMWCVcqyL1ceyBc+lwfy5X83aU/Ta/t0Fw435aHT9umytdTUi7riKofv93+Dt9teg7BcpyfXz8dO/EbDZvIBOjp/hlIuGpd8ro9cdmvUS7poqrjJVp89o+/Xf6APMDN9K+mmo0DQU3925nacOm2Nei5XzdxAzI/zg83fxCbPZGycv9vxeR4a+iSXzV8T9fKEWFHChy1Zny3Z0nmFhOtEwmAqrpiMG4wngmqJqZjCVme+CVCU3ghMxoLrKc58I1B+u8XA39WkPWjyNGlP0+QGMVzwEZyf8Ff/WbWgZgP9QrzrqSAgL34YCleBo8BTQRmMZwRf20aQTc+Hn21DkTPADs+zDciGgXzWWDnzvto6yoP18qx84XO5uK9pczXt4WGjNtenw4ZOW9NpS+cb0Rim4hN8a/PfM5ocDvvk22xd3MHDpz5N3E9EvbyKicXGaWl9rZjNn5p4L7X9NL82G6GPfrlcdivZxe2k0odBOXR2/YTR05+OelkVc+ncVSS8JN8f/DpZI4uvNN8c/DJ3TTzAXeMPNFxHLNGYFEH2vznjsz0DpZ2LQSw2GwuC/pl4UPozEyOouIgZzFtn/o2rso/CmwLPgExcMRovPSrO9ugwgZQHyTDoT/rB54SvSXjB55QfxIYJH+J+sM8ypiHmB+XZMT/oPGTq4HqmBkOH5Uqas74xOZfIAv3TaZP//fIkfhhs+yoMmtWZGfCLtdIG1+Vfr/axXMrTtHnB4Z1mL3i31+5Am6Npd3zaHE3Ka4SXfSFW907Lm3x/4J/IG3k8PGxyXDN9M/eNfAizwbshd3Y/XqzNzy5uJ5vdEfWS1sXS9prLS3fKNuPWededcpOT9zCYPga4pNP7SSaPkcttj3hVlbN9cTefOvpZHtnyj0zGx9H4PN39Y0aTw3xo+BOySVfUNQOK9fgsQvmbAAgSwnNhqfWcpViIKeatoBy7UJK9YJ15VKBArfLhAbYJs2bhjcHa3iCcr+KRibI3Af6ASWuzc9bviyzQ91Sw+WIt/wp62efl5612+bneLBgEgXvhI+0Rfg4+ml1odkufmzzZACs2Nlc5PL7pe7zS8TygcXDwtc99ox/muulbGj4rmG7aT1P63SCbrz0mJ98X9ZLWTWkzrj5rH/1GyegD2PlNLMxfSXPLW6BsunoeZejk56jhg90Xrcvu4dNHP8ujg9/gaNNBsuTZ3/wWw7tO8KHhT7B74fKolyhERcQ0dNmaLnv1QK7QUGUhDPwXLVVW0h2Udy+aiqypyFjB+blV3hgsV56VVyucxyqnz/jpZd/kxxRKnT0wjezZTANZzh7nF34XKzyMERzWCIJtKzzcYWqCr3Vw2CRedngkEZ5eel6QcU+F123ssESI9XMsfZAf9H+bqfhEsbNOk9PKQ6c+RV+u8Tf1GUaW7p7vh1NwbebnrsLOb4p6WetGnXUybllGv4ECfYCpybtoaj6AUjni8dN0dD7N9NR7o15WRSX9FB858as8venHvNL5PDly+KbP17b8DdfP3Mb7Rj9Eoo5nQghxoRSQ9sK9lPm1ZXYdFZSF2+Wl42aplLxwftbUOEZQcu4WPitwwpJ0d9n5XrHSRa2auPbQnKvlRWSB/qZFj//lnQyWqYK6qLIaJOMi65GEEOsnYy7y+Kbv8lbbqwQFKx4OeXbPX8EHhn9pwwQEXd0/wjIXgn8BN8XkxP1RL2ldKa+s684GqNEvcN1WJifvobv7MVAO7R1PsbhwGbbdH/XSKsrA4J7RD7B1cRc/HvgO8+YcHh6vtj/P4eb93Df6Ia6Yu7bhj9IJcbFiGmLuSrUl66fYgr2szN0H5k4vsqW9i78+y/dG1rXRIHjXlCpk3sOMvaVLGyKEENFxlctLnc/wF7v+A2+1vVocgqV8xf2nH+KhU5/aMEF+c8sbZe00HcZHP4Dvp6Je1vo6S0YfVfZS4fvBRwOZm7mBXG5L+BqdZ1PfNzCM7Lm+rSHsWNjDbxz+PS6fuwaNJkuWKWuC72z+B/5u++c5nTwV9RKF2PAK9flWGCsn/CB+bnI1LfrsEXPjFiIKIS6Ij8+b7S/zTPfjzMZmCLL4LjY2l85dxX2jH6TJbYl6mVUTTwzT0/PdYsnOwtzlZDKXRr2sdXe2rjsohTbNsLxHo3z/jDr++qYYH/0gg1v/FqVyWLExejd9i5HTnybCfFjVpLw0Hxz6OLvmL+NnfT9gwZzHxeVE6gh/u+O/cuXsddw5cR/dduOUqgmxUUigL4QAwFE2b7e9xgtdTzIZn6BUpuPQ4rTy4ZFPsnPhkqiXWVWWNUNf39dAuYCDY3cyPvbBqJdVEeWbcTHO7JykTRMVjvVWnoe2Guvlw3E6GBt9kE19j4CySaXfpav7x0xO/AIb4RizQnHZ3NXsWNjDCz1P8Vrnz8mRw8LkzbaX2dv2OpfOX8UdE++lPzcY9XKFEGvUWM/UQojzNmfN8Ern87zW/gJZM0MhwHdxSHgp7py4j2unb8bSsaiXWlWWNUP/5i9iWXNoXHzPYmT4E2jdmDMCgoFZQX2pb5750qANk7CvaHjdxvt3WFy4nJnpMdo7ngeVp7XtebQ2mZq8n40Q7AMk/CR3j76fq6dv5KlNP+Zw8/4w4LfY1/I6+1veYvvibq6fuZVL5q/E0hJGCFHL5BEqxAZkqzzvtu7l7bZXOdp0CD8c/+bi4uAS9+PcMflebpi8g7iOR73cqovFx+jr/woxaxaNg9Y+o8OfwHE6ol5axSzpj79CWU4jd94pNzV5F7H4NE1N74DK09b+DEo5TE58gI1QxlPQYXfx8MlPM5w6wUvdzxYDfhOTI00HONZ0kLTXzNWzN3LtzE105zfJxl0hapAE+kJsEDkjw5Hmg7zbspd3W/biKAfQ+Pi4eHg4tDjt3DF1O1fNXE+y0TabrlG6aT+9m76FoZxikD8y9HGyDTxICUC5bvH0GTX6lPfS1w23GXcpg9HTH6av3yfddCDM7L9ALD7J2MjH8P101AusqoHsVh4+uZXxxAgvdT/Dgda3yJHDwMA1XV7o/BkvdD5Fl93NZXNXc+n81fTlNkvQL0SNkEBfiAbl4zOSHOJ402EON+/nZPpYmLkHHy8M8F00PoOZHdw4dTs75y/F2EBZy3KGkaWz+8e0tryORgdBvm8wOvwxstldUS+v4oKMflC6U569L9ogGf2Axcjph9jU/71iZj+VOsSWrZ9nfPxDZBY33lCpnnwfHxz6OO8ZfYB97a/xVscrzFoz2ICFxVh8lMnucZ7tfoJWt40di3vYvrib7Qt7aPY2zuZ9IWqNBPpCNIgFc56R1BCnkyc5mT7GUOo4tmGHlwaZew8fDxcfn067hytnr+Xy2WtpddqjXHrEXFrbXqWj40lMMxO20LRxnRZGhn8Z2+6JeoFVsaTrzkqbcRt0Ou7qLEZPP0xHZzcdnc+AymGYHpv6vkY2s5upyfc1fK/9lbS6bdw2cS+3TNzNiaYj7Gt/ncPNB8gbubAFoMmU5TLbNs0bbS8D0GV3szm7jYHsVjZnt9CT68fkzL8xIcT6k0BfiDqi0Sxa80zGx5mKTzCZGGciPspocpgFa37JNf3wPy8M7wF6cwPsWriU3XOX05Pv29CH101zjpbWV2ltexXLnA+z+EF3ncX5Sxkfe3BDlWkozyvOelmxdMcsle6UT9FtbIrpqfeQz/fR0/sjTGsO8EilDzKYPkwmu5O52ZvJLO6BDRa4GhhBxn5xN65yON50mIOt+zjccoCskSlex8RkPD7KRHyMN9teBhQmJp35bnryfXTne+nJb6I7v4kOu1veAAixztYU6CulPgD8Z4Jnsi9orf/vZZcngL8DbgQmgU9qrY+t71KFaGwaTd7IkbEWmbdmmY/NMm/NMRebYd6aZTY2w3R8gryRP+M7ffxgWh5eGNgHJTotThtbMtvZuriLHQt7aPLONSy7kfkkEsOkUsdIN71LMnkSIAzwPcDBdZqZHP8wixuwNKM8eF+pR34xo683Ska/JLO4m5PHB+nqfoKW1jdB5dCYpFKHSKUO4/spMouXks3sIpvdhue1Rr3kqrJ0jF0Ll7Fr4TJ8fEZTw5xoOsLxpsMMp0+QIwcELTzNMPwfTQwzljgdJhtU8fIWt5VWp502p4N2u4NWt4NWp40mt4Umt5m01yydfoQ4D+d8tCilTODPgAeAU8BLSqlHtNb7yq72GWBaa71bKfUp4I+BT1ZiwULUEo3GUx6ecnGVi2PYOIaNbdg4Ko9dOG3Y2EYex7DJG3myZoastRh8NjNkzUWyZrYYoK98S6X//DA49cOvAEwdozfXz6Zcf3CIPLN1w5XkKOVgGFksax4rNkUsNoMVmyIeHycRH0WpYMNp4d8RXMDDc9PMTN3F3NyN6A0aRJx1YBZLg/+NFugD+H6S8bEHmZm5ic6uZ2lq2g8qBygMw6W55TVaWt4AwPPS2PYmbLsX2+7Bddvw3BZctyWcqNy4R9IMDPqzg/RnB7l14m5c5TCWPM1Iaojh1ElGUqeYjc2Ej78guFcojPC/GWuKGWsKI1V4A3Dmv1XST5J2m0l5aZJ+kqSXIuGlSPjJ4MNLkvSTxL0EMR0n5sewtIXlx7B0jJgfx9IWMT++YfckiY1jLa9otwCHtNZHAJRSXwUeBsoD/YeB/yM8/Q3gT5VSSmutV/uhOfMkbyf+YKUubhet8ARyxvnn+dyq1arLP+MWz3q753ez53G7heuv6VpruMb53u4af99zrO+8b3flW0GrMIBT4KswIFa6eH5wXnhZ+emyy8rP99F4ho+nNJ7ycZWPZxQCe41r+PjneV+t/DtotAcxr/hV2Wd9xu+b8Ey6c2m682m6cim6c2k2ZZvozqUwyACHw481uMD1rwd1Pve74aMMH2W4KMMD00MZXnieh7IcjFgeZbpLv88DPE2QUNThRzDdFa3IT/WQHdpFbnwzhta08/J6/Xp1xbBtEqOni1+vWKNvWaAUaOh4+eckR4aDrzcgmz68ZAvpwSMkNx3HTC2WXWoAJikOUQxULUqvtlrhuzG0F0O7MXzPQrsxtGeBNtC+EXzWqvTZN9C67MVyyUNnWTB8xmXBDLTl5xXWUg3blnzVRN5IMJ5aZCy9yFhqkfHUAmOpRebi+TNeV1RZtr/wfx/FIrCoAFOhzKXfcT5MX2FpE0ODoQ1MrTC1gaEVplbBeb7CQIXnBV8rCtcrrVPpcJXLPxM8blTht9BglF2fsuspXfqdV/uN1AXcb+XfcbbvP9tPLl/X2V46NnJJaLU5vQ6jp8/e9nktgf5m4GTZ16eAW1e7jtbaVUrNAl3AxGo/dD45z1M7H2vkxIZoYJrg5dxYcs65v+dc14v7iibXoNUxaHcM2h2TdsegzTFpsw26bZNmV6HIA9NLv7mR5hetliMoxOkrJpSXf48+4zx/IYZ3uhl3uAXveBtGzqSJYzRx7GJX3AD8YttML3Vma1UvWThPkz5+hPTJY8gTOPi0QI+FtXUOc2AesyeDslY6Mrc8O73Kv93KSeyyyxvj33wQgjfgOYpPZa7STMd8ZuIeU3GfmZjHVNxjLuYzb/ksWJoFay0JFlX2/3Nfzw8/1vY9QtQO7WsS5tmHWVb1GLVS6nPA5wC6rlT4G2ZDl6hvZ39RMbTC0mD5EPMVCV+R8BQxn7LTioQXfB3zFWlX0RR+pD2j+LV11kxN8HLUyB3ML5oGnTXxMxb+bAx/LoY/E8ebieONJ9HZ8qe8fPghANAa3zCY3H0F44sKMpNLLs717mLw+BDp6XHAXnGo1oY1CxxqAVoAjdHuYHblMbvyGB15jCYXo9lFNTuomI+EkytTQGcOOoGdKJYeCgloNBlTsxDTZCxNztRkw4/cCh+uAbahcZXGNsAxNE742TXOPJ688rO93F+idml99lh6LYH+ELCl7OvB8LyVrnNKKWUBbQSbcpctRv8l8JcAu69q1x/I3X3Gja14yGcdDxGt9j7/vA81nWfFQ/GnLwvkLmz953P9lb/DOM9Df6uvc+XzV7/2Gm637N/2fFZZPBwaHhI1wsOgBkbQ9k2HtaDhYdLi12WHS4uXhactbWBpIzhcW/41hfPV2X+ns/07n/kattbf9EK+aX2s+6H+tf48Bb4JvgV6pc8xcJPB57SCNNC9zkttZErB4CD6mmsYTCS4dtUr/ks4fRr11luwsFDFBTYQ5YLhgOkEnw0HTBsMF1SYW1YrfZS/6Ohln5ffxplHs87r8hrXDPSuduGqR/zOFOx00jiGhw94KizVROMXTqtgN5Qfnu+psssKx2lVqdCyvCQUwFel8wulpeWFmYXLKX7f0nLWs91LZyt7LX+qvuCfseTnre16a/3ZYv1YRpw/5ZurX76Gn/ESsEcptYMgoP8U8CvLrvMI8JvA88DHgZ+erT4foD25m49e+cgabl4IIUTN2LIl+BCiAcSAZNSLEOKirZ40O2egH9bc/z7wI4L2mn+jtd6rlPoj4GWt9SPAXwNfVkodAqYI3gwIIYQQQgghIrKmwgGt9aPAo8vO+8Oy0zngE+u7NCGEEEIIIcSFkt1UQgghhBBCNCAJ9IUQQgghhGhAEugLIYQQQgjRgCTQF0IIIYQQogFJoC+EEEIIIUQDkkBfCCGEEEKIBiSBvhBCCCGEEA1IAn0hhBBCCCEakAT6QgghhBBCNCAJ9IUQQgghhGhAEugLIYQQQgjRgCTQF0IIIYQQogFJoC+EEEIIIUQDkkBfCCGEEEKIBiSBvhBCCCGEEA1Iaa2juWGl5oEDkdy4qIRuYCLqRYh1Ifdl45D7srHI/dk45L5sLFHfn9u01j0rXWBVeyVlDmitb4rw9sU6Ukq9LPdnY5D7snHIfdlY5P5sHHJfNpZavj+ldEcIIYQQQogGJIG+EEIIIYQQDSjKQP8vI7xtsf7k/mwccl82DrkvG4vcn41D7svGUrP3Z2SbcYUQQgghhBCVI6U7QgghhBBCNKCKB/pKqQ8opQ4opQ4ppf7tCpcnlFJfCy9/QSm1vdJrEhdmDfflbymlxpVSr4cf/yKKdYpzU0r9jVJqTCn19iqXK6XUfwnv6zeVUjdUe41i7dZwf96rlJote2z+YbXXKNZGKbVFKfWEUmqfUmqvUupfr3AdeXzWgTXel/LYrBNKqaRS6kWl1Bvh/fnvVrhOzcW0FQ30lVIm8GfAg8AVwKeVUlcsu9pngGmt9W7gPwJ/XMk1iQuzxvsS4Gta6+vCjy9UdZHifHwR+MBZLn8Q2BN+fA748yqsSVy4L3L2+xPg6bLH5h9VYU3iwrjA/6i1vgK4Dfi9FZ5r5fFZH9ZyX4I8NutFHrhPa30tcB3wAaXUbcuuU3MxbaUz+rcAh7TWR7TWNvBV4OFl13kY+FJ4+hvA+5RSqsLrEudvLfelqBNa66eAqbNc5WHg73Tg50C7Uqq/OqsT52sN96eoE1rr01rrV8PT88A7wOZlV5PHZx1Y430p6kT4eFsIv4yFH8s3utZcTFvpQH8zcLLs61Oc+UdevI7W2gVmga4Kr0ucv7XclwAfCw8lf0MptaU6SxMVsNb7W9SP28NDzj9QSl0Z9WLEuYWH/a8HXlh2kTw+68xZ7kuQx2bdUEqZSqnXgTHgMa31qo/NWolpZTOuWE/fBbZrra8BHqP0rlYIEa1XCUakXwv8V+A70S5HnItSqhn4JvBvtNZzUa9HXLhz3Jfy2KwjWmtPa30dMAjcopS6KuIlnVOlA/0hoDyrOxiet+J1lFIW0AZMVnhd4vyd877UWk9qrfPhl18AbqzS2sT6W8tjV9QJrfVc4ZCz1vpRIKaU6o54WWIVSqkYQWD4D1rrb61wFXl81olz3Zfy2KxPWusZ4AnO3BtVczFtpQP9l4A9SqkdSqk48CngkWXXeQT4zfD0x4GfamnuX4vOeV8uqxF9iKAeUdSnR4DfCLt73AbMaq1PR70ocWGUUn2FOlGl1C0Ez/2SUKlB4f3018A7Wus/WeVq8visA2u5L+WxWT+UUj1KqfbwdAp4ANi/7Go1F9NalfzhWmtXKfX7wI8AE/gbrfVepdQfAS9rrR8heBB8WSl1iGAz2acquSZxYdZ4X/6BUuohgk4DU8BvRbZgcVZKqX8E7gW6lVKngP+dYGMRWuu/AB4FPggcAjLAb0ezUrEWa7g/Pw78rlLKBbLAp6J+8RGruhP4deCtsBYY4H8FtoI8PuvMWu5LeWzWj37gS2EXQgP4utb6e7Ue08pkXCGEEEIIIRqQbMYVQgghhBCiAUmgL4QQQgghRAOSQF8IIYQQQogGJIG+EEIIIYQQDUgCfSGEEEIIIRqQBPpCCCGEEEI0IAn0hRAiIkqpRwsDWC7gez+ilLrifK+nlPojpdT9F3KbK/zs65VSf32RP+OLSqmPh6e/sJbf6Tx+do9S6ofr9fOEEKLeSKAvhBBVFk40NbTWHwxHqV+IjwBrCYqXXE9r/Yda68cv8DaX+1+B/7L8zHD0+3nTWv8LrfW+i15V6eeNA6eVUneu188UQoh6IoG+EEKsM6XU/6CUejv8+DfheduVUgeUUn8HvA1sUUodU0p1h5f/mlLqRaXU60qp/xZOX0QptaCU+r+UUm8opX6ulNqklLoDeAj4D+H1dymlPquUeim83jeVUulVrleeQX+fUuo1pdRbSqm/UUolwvOPKaX+nVLq1fCyy1b4HVuAa7TWb4Rf/x9KqS8rpZ4lmAy5XSn1dPgzXg3XUniT86fhv8XjQG/Zz/yZUuqm8PSfK6VeVkrtVUr9u7LrrLg2pdQ94e/4evg7tYTf8h3gV9fljhVCiDojgb4QQqwjpdSNwG8DtwK3AZ9VSl0fXrwH+LzW+kqt9fGy77kc+CRwp9b6OsCjFJw2AT/XWl8LPAV8Vmv9HPAI8D9rra/TWh8GvqW1vjm83jvAZ1a5XuE2k8AXgU9qra8GLOB3y36VCa31DcCfA//TCr/qTQRvWMpdAdyvtf40MAY8EP6MT1LK/P8ScGl43d8A7ljln/J/01rfBFwD3KOUuuYca/ufgN8L//3uArLh+S+HXwshxIYjgb4QQqyv9wDf1lovaq0XgG9RCjSPa61/vsL3vA+4EXhJKfV6+PXO8DIb+F54+hVg+yq3e1WYQX+L4E3CledY56XAUa31u+HXXwLuLrv8W+e4zX5gfNl5j2itCwF2DPircD3/RKl86G7gH7XWntZ6GPjpKuv7ZaXUq8Br4e9SXqa00tqeBf5EKfUHQLvW2g3PHwMGVrkNIYRoaBdURymEEOKCLK5yvgK+pLX+/6xwmaO11uFpj9Wft78IfERr/YZS6reAey9inQD5c9xmFkguO6/89/vvgVHgWoKkUm6tN6yU2kGQob9Zaz2tlPrists6Y21a6/9bKfV94IPAs0qpX9Ba7w+/L4sQQmxAktEXQoj19TTwkbBGvomgVOXpc3zPT4CPK6V6AZRSnUqpbef4nnmgpezrFoKNpzGW1qQvv17BAWC7Ump3+PWvA0+e4zbLvQPsPsvlbcBprbUf/mwzPP8p4JNKKVMp1Q+8d4XvbSV40zCrlNoEPHiuxSildmmt39Ja/zHwElDYV3AJZ5YYCSHEhiCBvhBCrCOt9asE2fUXgReAL2itXzvH9+wD/r/Aj5VSbwKPEZTGnM1Xgf853Hi6C/j/hbf3LLD/LNcr3GaOYC/BP4XlNT7wF+fxe+4H2so2vS73eeA3lVJvEATdhWz/t4GDwD7g74DnV/jZbxCU7OwHvhL+Tufyb8LNz28CDvCD8Pz3At9f0y8lhBANRpWOCAshhBBrp5T674F5rfUXol7LapRSTwEPa62no16LEEJUm2T0hRBCXKg/p1QvX3OUUj3An0iQL4TYqCSjL4QQQgghRAOSjL4QQgghhBANSAJ9IYQQQgghGpAE+kIIIYQQQjQgCfSFEEIIIYRoQBLoCyGEEEII0YD+/zNjp3l4PcIDAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "N_theta = 16\n", "theta, B_sf, B_V = np.pi/2, .1, .3\n", "bins = 360\n", "th = np.linspace(0, np.pi, bins, endpoint=False)\n", "fig, ax = plt.subplots(1, 1, figsize=(13, 8))\n", "for B_theta, color in zip(B_theta_, [plt.cm.hsv(h) for h in np.linspace(0, 1, len(B_theta_))]):\n", " kappa = 1./4/B_theta**2\n", " ax.plot(th, vonmises(th, theta, kappa, norm=False), alpha=.6, color=color, lw=3)\n", " ax.fill_between(th, 0, vonmises(th, theta, kappa, norm=False), alpha=.1, color=color)\n", " ax.set_xlabel('orientation (radians)')\n", "_ = ax.set_xlim([0, np.pi])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's check that the HWHH (half-width at half-height) is given by the bandwidth parameter ``B_theta``. Note that for high values of ``B_theta``, the minimum of the distribution may be higher than 1/2 and that this decriptive value may be ill-defined (see for instance [Swindale, N. V. (1998). Orientation tuning curves: empirical description and estimation of parameters. Biological Cybernetics, 78(1):45-56](https://link.springer.com/article/10.1007/s004220050411) - [PDF](https://d1wqtxts1xzle7.cloudfront.net/49050354/s00422005041120160922-16578-1hjy79r.pdf?1474598666=&response-content-disposition=inline%3B+filename%3DOrientation_tuning_curves_empirical_desc.pdf&Expires=1614174011&Signature=EsT0T6HgT4xrnQxgx~ncu4L3or~zGCScY5f7bX68DM-8pUuQHSA9emaQN14M179eVpD-YVLesfLzzVF~zogV2MYrq7I7QGgfdAFGQ9V47gF3CdN30pmUCOoZULvmMGlhz4wG0o~r04blzAsoqhm62xZdMDROfcDJhPafQTNUbAsfc59DLmgjJeTu7du-~9XFxVneEa5aq8EmMhPPauds0dRIusweTonsUtmldFUURjHG4icizV979OFruiFlXINH816F1dRjtBNCIye24GYu3tBmYFgUyfBg0fzYn6QrcOdS3XB5SqvNBo6Xr~ANp~B1WgI77cik-NEjhomL3bs-SA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA)). We will use the broader definition by using the fully normalized von mises that peaks at one and with a minimum at 0 : \n", "$$M(\\theta) = \\frac {\\exp( \\kappa \\cdot cos(2\\theta)) - \\exp( -\\kappa) }{\\exp(\\kappa) - \\exp( -\\kappa) }$$\n", "The different expression for the HWHH are for the Gaussian approximation:\n", "$$\\theta_{HWHH} = \\sqrt{2\\ln(2)} \\cdot \\kappa $$\n", "for the non-normalized von-Mises pdf (as in Swindale):\n", "$$\\theta_{HWHH} = \\frac 1 2 \\cdot \\arccos (1 + \\frac{ \\ln( \\frac 1 2 )}{\\kappa})$$for the normalized (exact) solution:\n", "$$\\theta_{HWHH} = \\frac 1 2 \\cdot \\arccos (1 + \\frac{\\ln(\\frac{1+e^{-2\\kappa})}{2}}{\\kappa})$$" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ ":8: RuntimeWarning: divide by zero encountered in double_scalars\n", " kappa = 1./4/B_theta**2\n", ":17: RuntimeWarning: divide by zero encountered in true_divide\n", " k= 1./4/B_theta_**2\n", ":18: RuntimeWarning: invalid value encountered in arccos\n", " ax.plot(B_theta_, .5*np.arccos(1-np.log(2)/k), 'b', label='swindale')\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw8AAAHhCAYAAAAoDYINAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAB1PUlEQVR4nO3deZzN1R/H8dfB2PethYrIvmarLCmFVGSpbEW29tIiKcuMJVupRIuQn1BKlEiylT3Gvi9ZsmUbu9nn/P44Q0OMwdz5ztx5Px+P+5h7v8u9n/kmvp97zudzjLUWERERERGRK0njdQAiIiIiIpIyKHkQEREREZEEUfIgIiIiIiIJouRBREREREQSRMmDiIiIiIgkiJIHERERERFJkHReB5CY8ubNawsVKuR1GCIiIiIiKdaKFSuOWGvzXWqfXyUPhQoVIjg42OswRERERERSLGPM7svt07QlERERERFJECUPIiIiIiKSIEoeREREREQkQfyq5uFSIiMj2bt3L2FhYV6HkmJlzJiRggULEhAQ4HUoIiIiIuIhv08e9u7dS7Zs2ShUqBDGGK/DSXGstRw9epS9e/dSuHBhr8MREREREQ/5/bSlsLAw8uTJo8ThGhljyJMnj0ZuRERERMT/kwdAicN10vUTEREREUglyUNys2vXLsqUKeN1GP9Ru3ZtrZMhIiIiIpel5MFPREVFeR2CiIiIiPg5JQ+XERgYmGjvNWTIEMqUKUOZMmX46KOPAHez36pVK0qWLEmzZs04e/YsAG+//TalSpWiXLlyvPnmmwAcPnyYpk2bUqVKFapUqcKiRYvOx/jUU09RvXp1nnrqKe666y42bNhw/nPPjSScOXOGdu3aUbVqVSpWrMhPP/0EQGhoKM2bN6dkyZI0btyY0NDQRPudRURERMT/KHm4jKCgoER5nxUrVvDVV1/x559/snTpUr788kuOHTvGli1beOGFF9i0aRPZs2fn008/5ejRo0yZMoUNGzawdu1aunfvDsCrr77Ka6+9xvLly/nhhx/o0KHD+fffuHEjs2fP5ptvvuHJJ5/ku+++A+DAgQMcOHCAypUr069fP+6//36WLVvGvHnz6NKlC2fOnOGzzz4jc+bMbNq0iaCgIFasWJEov7OIiIiI+CclDz62cOFCGjduTJYsWciaNStNmjRhwYIF3HLLLVSvXh2A1q1bs3DhQnLkyEHGjBlp3749kydPJnPmzADMnj2bl156iQoVKtCwYUNOnjzJ6dOnAWjYsCGZMmUC4IknnmDSpEkAfPfddzRr1gyA3377jQEDBlChQgVq165NWFgYf//9N/Pnz6d169YAlCtXjnLlyiXptRERERGRlEXJQxyBgYEYY853Fzr3PDGnMJ1zcQcjYwzp0qVj2bJlNGvWjGnTplG/fn0AYmJiWLp0KatXr2b16tXs27ePrFmzApAlS5bz71GgQAHy5MnD2rVrmThxIk8++STg1mr44Ycfzp//999/U7JkyUT/nURERETEvyl5iCMwMBBrLdZagPPPryd5qFmzJj/++CNnz57lzJkzTJkyhZo1a/L333+zZMkSACZMmECNGjU4ffo0J06coEGDBnz44YesWbMGgLp16/LJJ5+cf8/Vq1df9vOefPJJBg0axIkTJ86PJNSrV49PPvnk/O+1atUqAGrVqsWECRMAWL9+PWvXrr3m31NERERE/J+SBx+78847adu2LVWrVqVatWp06NCBXLlyUbx4cYYPH07JkiU5duwYzz//PKdOneKRRx6hXLly1KhRgyFDhgAwdOhQgoODKVeuHKVKleLzzz+/7Oc1a9aMb7/9lieeeOL8th49ehAZGUm5cuUoXbo0PXr0AOD555/n9OnTlCxZkp49e1KpUiXfXgwRERERSdHMuW+j/UHlypXtxesUbNq06Zqm6AQGBvpkulJKda3XUURERERSFmPMCmtt5Uvt08jDZShxEBERERG/FxJyVYcreRARERERSW2OHIHOnaFgQdi0KcGnpfNdRCIiIiIikqyEhsLQofDee3D6NLRvD7lyJfh0JQ8iIiIiIv4uOhrGj4fu3WHPHnjkERgwAEqXvqq30bQlERERERF/9ttvUKkStGkD+fPDvHnw889XnTiAkgcREREREf+0Zg3Uq+ceJ07AN9/AsmVQu/Y1v6WSBz/Us2dPZs+e7XUYIiIiIuKFPXvcKEPFirB8OQwZAps3Q/PmkOb6bv9V8+CHevfu7XUIIiIiIpLUTpyA/v3h44/BWnjzTejW7aoKoq9EIw9JoE+fPhQvXpwaNWrQokUL3n//fb788kuqVKlC+fLladq0KWfPngWgbdu2TJo06fy5WbNmBeDAgQPUqlWLChUqUKZMGRYsWEB0dDRt27alTJkylC1blg8//PA/79G7d2+qVKlCmTJl6NSpE+cWBaxduzZdu3alatWqFCtWjAULFiTlJRERERGRxBIR4RKGIkVg4EB4/HHYsgUGDUrUxAGUPPjc8uXL+eGHH1izZg0zZszg3ArYTZo0Yfny5axZs4aSJUsyatSoeN9nwoQJ1KtXj9WrV7NmzRoqVKjA6tWr2bdvH+vXr2fdunU888wz/znvpZdeYvny5axfv57Q0FCmTZt2fl9UVBTLli3jo48+IigoKHF/cRERERHxLWvhu++gZEm3ZkOFCrByJYwdC7fd5pOPTF3Tljp3htWrE/c9K1SAjz667O5FixbRqFEjMmbMSMaMGXn00UcBWL9+Pd27d+f48eOcPn2aevXqxfsxVapUoV27dkRGRvLYY49RoUIFbr/9dnbs2MHLL7/Mww8/TN26df9z3rx58xg0aBBnz54lJCSE0qVLn4+hSZMmAFSqVIldu3Zd068vIiIiIh6YPx+6dHEF0GXLwowZrjDaGJ9+rEYePNK2bVuGDRvGunXr6NWrF2FhYQCkS5eOmJgYAGJiYoiIiACgVq1azJ8/nwIFCtC2bVvGjh1Lrly5WLNmDbVr1+bzzz+nQ4cOF3xGWFgYL7zwApMmTWLdunV07Njx/OcAZMiQAYC0adMSFRWVFL+2iIiIiFyPTZugUSO4917Ytw9Gj4ZVq6B+fZ8nDpDaRh7iGSHwlerVq/Pss8/SrVs3oqKimDZtGp06deLUqVPcdNNNREZGMn78eAoUKABAoUKFWLFiBU888QRTp04lMjISgN27d1OwYEE6duxIeHg4K1eupEGDBqRPn56mTZtSvHhxWrdufcFnn0sU8ubNy+nTp5k0aRLNmjVL2gsgIiIiItfvn38gMBBGjoTMmd0K0a++6p4nodSVPHigSpUqNGzYkHLlynHDDTdQtmxZcuTIQZ8+fahWrRr58uWjWrVqnDp1CoCOHTvSqFEjypcvT/369cmSJQsAv//+O4MHDyYgIICsWbMyduxY9u3bxzPPPHN+pKJ///4XfHbOnDnp2LEjZcqU4cYbb6RKlSpJ+8uLiIiIyPU5fRo++AAGD4bwcHjhBejRA/Ll8yQcc677jj+oXLmyPVeQfM6mTZsoWbKkRxE5p0+fJmvWrJw9e5ZatWoxYsQI7rzzTk9julrJ4TqKiIiIpBpRUTBqFPTqBQcPQrNmbrThjjt8/tHGmBXW2sqX2qeRhyTQqVMnNm7cSFhYGG3atElxiYOIiIiIJBFr4eefoWtXt7Bb9eowZQrcfbfXkQFKHpLEhAkTvA5BRERERJK7ZctcB6X586FYMZc0NGqUJIXQCeWzbkvGmNHGmEPGmPWX2d/FGLM69rHeGBNtjMkdu2+XMWZd7L7gS50vIiIiIuIX/voLmjeHatXcaMOnn8L69fDYY8kqcQDftmodA9S/3E5r7WBrbQVrbQWgG/CHtTYkziH3xe6/5HwrEREREZEU7ehRtw5ZyZJuqlKPHrB9Ozz/PAQEeB3dJfls2pK1dr4xplACD28BfOOrWEREREREko3QUBg6FPr3h1OnoF07CAqCm2/2OrIr8nyROGNMZtwIxQ9xNlvgN2PMCmNMJ28iExERERFJRDExMHYsFC8Ob78NNWvC2rXw5ZcpInGAZJA8AI8Ciy6aslTDWnsn8BDwojGm1uVONsZ0MsYEG2OCDx8+7OtYk0TPnj2ZPXv2VZ1TqFAhjhw5ct3HiIiIiIgPzJoFd94JbdpA/vwwd66bqlS6tNeRXZXkkDw056IpS9bafbE/DwFTgKqXO9laO8JaW9laWzmfR4tlJLbevXvzwAMPeB2GiIiIiFyvNWugXj2oWxdOnIBvvnFdle67z+vIromnyYMxJgdwL/BTnG1ZjDHZzj0H6gKX7NiUEpw5c4aHH36Y8uXLU6ZMGQYOHEiTJk0A+Omnn8iUKRMRERGEhYVx++23A9C2bVsmTZoEuNGCXr16ceedd1K2bFk2b94MwNGjR6lbty6lS5emQ4cOxF3s77HHHqNSpUqULl2aESNGXDKucePGUbVqVSpUqMCzzz5LdHS0Ly+DiIiISOqyZw+0bQsVK8Ly5W6V6M2bXVelNMnh+/tr48tWrd8AS4Dixpi9xpj2xpjnjDHPxTmsMfCbtfZMnG03AAuNMWuAZcB0a+2vvorT13799Vduvvlm1qxZw/r163nuuedYvXo1AAsWLKBMmTIsX76cP//8k2rVql3yPfLmzcvKlSt5/vnnef/99wEICgqiRo0abNiwgcaNG/P333+fP3706NGsWLGC4OBghg4dytGjRy94v02bNjFx4kQWLVrE6tWrSZs2LePHj/fNBRARERFJTU6ccPUMxYrBt9/Cm2+6Vqyvvw4ZMngd3XXzZbelFgk4ZgyupWvcbTuA8r6IqXNniL1vTzQVKsBHH11+f9myZXnjjTfo2rUrjzzyCDVr1qRIkSJs2rSJZcuW8frrrzN//nyio6OpWbPmJd/j3EhFpUqVmDx5MgDz588///zhhx8mV65c548fOnQoU6ZMAWDPnj1s27aNPHnynN8/Z84cVqxYQZUqVQAIDQ0lf/7813oJRERERCQiAj77DPr0cS1YW7eGvn3httu8jixRaYVpHytWrBgrV67kl19+oXv37tSpU4datWoxY8YMAgICeOCBB2jbti3R0dEMHjz4ku+RITZLTZs2LVFRUfF+3u+//87s2bNZsmQJmTNnpnbt2oSFhV1wjLWWNm3a0L9//8T5JUVERERSK2vh+++hWzfYsQPq1IFBg1xxtB9KVclDfCMEvrJ//35y585N69atyZkzJyNHjqRz5848/fTTPP300+TLl4+jR49y8OBBypQpk+D3rVWrFhMmTKB79+7MmDGDY8eOAXDixAly5cpF5syZ2bx5M0uXLv3PuXXq1KFRo0a89tpr5M+fn5CQEE6dOsVtfpYZi4iIiPjUggVuWtKyZVCmDMyY4Yqjk9mq0IkpVSUPXli3bh1dunQhTZo0BAQE8Nlnn1G6dGkOHjxIrVquA225cuX4559/MFfxB61Xr160aNGC0qVLc88993DrrbcCUL9+fT7//HNKlixJ8eLFueuuu/5zbqlSpejbty9169YlJiaGgIAAhg8fruRBREREJCE2b4auXWHqVLc+w+jR8PTTkDat15H5nInbpSelq1y5sg0ODr5g26ZNmyhZsqRHEfkPXUcRERFJ9f75BwIDYeRIyJzZFUZ37uye+xFjzAprbeVL7dPIg4iIiIhIfE6fdq1WBw+G8HB4/nno2RP8ZI2xq6HkQURERETkUqKi3JSkXr3cqEOzZvDee3DHHV5H5hklDyIiIiIicVkL06a5uoZNm+Cee2DyZLj7bq8j81zKXd5ORERERCSxLVsGtWtDw4YQHe2ShoULlTjEUvIgIiIiIrJjBzRvDtWquW5Kn34K69dD48Z+3Xr1amnakoiIiIikXkePupWghw+HgADo0QO6dIFs2byOLFnSyEMK9uOPP7Jx40avwxARERFJeUJDYeBAKFIEhg6FNm1g2zbo3VuJQzyUPKRgSh5ERERErlJMDIwdC8WLu3UaatSAtWvhyy/dgm8SLyUPSWDcuHFUrVqVChUq8Oyzz/Lnn39Srlw5wsLCOHPmDKVLl2b9+vWcPn2aOnXqcOedd1K2bFl++umn8+8xduxYypUrR/ny5XnqqadYvHgxU6dOpUuXLlSoUIG//vrLw99QREREJAWYNQvuvNONMuTPD3Pnuq5KpUt7HVmKoZoHH9u0aRMTJ05k0aJFBAQE8MILL7BlyxYaNmxI9+7dCQ0NpXXr1pQpU4aoqCimTJlC9uzZOXLkCHfddRcNGzZk48aN9O3bl8WLF5M3b15CQkLInTs3DRs25JFHHqFZs2Ze/5oiIiIiydeaNfDWW/Dbb1CoEEyYAE8+CWn0PfrVSlXJQ+dfO7P6n9WJ+p4VbqzAR/U/uuz+OXPmsGLFCqpUqQJAaGgo+fPnp2fPnlSpUoWMGTMydOhQAKy1vPPOO8yfP580adKwb98+Dh48yNy5c3n88cfJmzcvALlz507U30FERETEL+3Z4wqgx46FnDndKtEvvggZMngdWYqVqpIHL1hradOmDf37979g+4EDBzh9+jSRkZGEhYWRJUsWxo8fz+HDh1mxYgUBAQEUKlSIsLAwjyIXERERSaFOnIABA+Cjj1yNwxtvwDvvQK5cXkeW4qWq5CG+EQJfqVOnDo0aNeK1114jf/78hISEcOrUKV5++WX69OnDzp076dq1K8OGDePEiRPkz5+fgIAA5s2bx+7duwG4//77ady4Ma+//jp58uQ5P20pW7ZsnDp1Ksl/JxEREZFkKSICPv/cdUw6ehRatXJtWAsV8joyv5GqkgcvlCpVir59+1K3bl1iYmIICAigUaNGBAQE0LJlS6Kjo7nnnnuYO3curVq14tFHH6Vs2bJUrlyZEiVKAFC6dGneffdd7r33XtKmTUvFihUZM2YMzZs3p2PHjgwdOpRJkyZRpEgRj39bEREREQ9YC5MmQbdu8NdfcP/9MHiwK46WRGWstV7HkGgqV65sg4ODL9i2adMmSpYs6VFE/kPXUURERJKlBQvcom5//gllysCgQVC/vlaFvg7GmBXW2sqX2qcScxERERFJeTZvhsceg1q1XGH06NGwejU89JASBx9S8iAiIiIiKcc//8Dzz7tRhrlzoV8/tzL0M89A2rReR+f3VPMgIiIiIsnf6dOu1ergwRAe7hKIHj3cYm+SZFJF8mCtxWj46pr5U12MiIiIpDBRUW5KUq9ebtShaVPo3x/uuMPryFIlv5+2lDFjRo4ePaob4GtkreXo0aNkzJjR61BEREQkNbEWfv4ZypWDZ5+F22+HxYtdVyUlDp7x+5GHggULsnfvXg4fPux1KClWxowZKViwoNdhiIiISGqxfLnroPTHH1CsGEye7IqjNZPEc36fPAQEBFC4cGGvwxARERGRK9mxw60EPXEi5MsHw4dDx44QEOB1ZBLL75MHEREREUnmjh51K0EPHw7p0kH37m7kIXt2ryOTiyh5EBERERFvhIbCJ5/Ae+/BqVPQrh0EBcHNN3sdmVyGkgcRERERSVoxMTB+PLz7rlvg7eGHYcAAt3aDJGt+321JRERERJKRWbOgUiV4+mlX1zB3LkybpsQhhVDyICIiIiK+t2YN1K8PdevCsWNu5GH5crjvPq8jk6ug5EFEREREfGfvXmjbFipWhGXL3CrRW7ZAy5aQRreiKY1qHkREREQk8Z04AQMHwocfuhqHN95wbVhz5fI6MrkOSh5EREREJPFERMDnn0Pv3q4Fa6tWrg1roUJeRyaJQGNFIiIiInL9rIXvv4dSpeDVV6F8eVixAsaNU+LgR5Q8iIiIiMj1WbAA7r4bnngCMmWCX36B2bPhzju9jkwSmZIHEREREbk2mzfDY49BrVpuvYZRo2D1anjoITDG6+jEB5Q8iIiIiMjV+ecfeP55tzbD3LnQrx9s2+ZWiE6b1uvoxIdUMC0iIiIiCXP6NAwZAoMGQXi4SyB69ID8+b2OTJKIkgcRERERiV9UFIweDb16uVGHpk3hvfegWDGvI5MkpuRBRERERC7NWpg2Dbp2hU2b4J574Icf3E9JlVTzICIiIiL/tXw53HcfNGzoRh4mT4aFC5U4pHJKHkRERETkXzt2QIsWULUqbNwIw4fDhg3QuLE6KImmLYmIiIgIbjXovn1dspAuHXTvDl26QPbsXkcmyYiSBxEREZHULDQUPvnEFUCfOgXPPANBQVCggNeRSTLks2lLxpjRxphDxpj1l9lf2xhzwhizOvbRM86++saYLcaY7caYt30Vo4iIiEiqFRMDX38NxYu7gujq1WHNGhg5UomDXJYvax7GAPWvcMwCa22F2EdvAGNMWmA48BBQCmhhjCnlwzhFREREUpfZs6FSJXj6aciXD+bMgenT3aJvIvHwWfJgrZ0PhFzDqVWB7dbaHdbaCOBboFGiBiciIiKSGq1dC/Xrw4MPwrFjMH6866p0//1eRyYphNfdlu42xqwxxswwxpSO3VYA2BPnmL2x2y7JGNPJGBNsjAk+fPiwL2MVERERSZn27nW1DBUqwJ9/wvvvw5Yt0LIlpPH6dlBSEi8LplcCt1lrTxtjGgA/Andc7ZtYa0cAIwAqV65sEzVCERERkZTsxAkYOBA+/NDVOLzxBnTrBrlzex2ZpFCepZrW2pPW2tOxz38BAowxeYF9wC1xDi0Yu01EREREEiIiwnVQKloU+veHpk3dSMPgwUoc5Lp4ljwYY240xq00YoypGhvLUWA5cIcxprAxJj3QHJjqVZwiIiIiKYa18P33UKoUvPIKlCsHwcEwbhwUKuR1dOIHfDZtyRjzDVAbyGuM2Qv0AgIArLWfA82A540xUUAo0Nxaa4EoY8xLwEwgLTDaWrvBV3GKiIiI+IWFC+HNN11NQ5ky8Msvrjhaq0JLIvJZ8mCtbXGF/cOAYZfZ9wvwiy/iEhEREfErmzfD22/DTz/BzTfDqFHQpg2kTet1ZOKHVF4vIiIikhIdPAjPP+9GGebOhb59YetWaNdOiYP4jJfdlkRERHwiPBz27IEiRTRjQ/zQmTPwwQeu+DksDJ57Dnr2hPz5vY5MUgGNPIiIiN9ZsADuuMMtmiviN6Ki4MsvXQelXr2gXj3YsAGGDVPiIElGIw8iIuJ3Zs2CgAC4+26vIxFJBNbC9OnQtSts3Oj+YP/wA9xzj9eRSSqkkQcREfE7s2a5+6osWbyOROQ6LV8O990Hjz4KkZEuaVi0SImDeEbJg4iI+JUjR2DVKnjwQa8jEbkOO3ZAixZQtaobbRg2zE1RatJEhTziKU1bEhERv3KuzuGBB7yNQ+SaHD0K/fq5ZCFdOujeHbp0gezZvY5MBFDyICIifmbWLMiZEypX9joSkasQFgaffOISh1On4JlnICgIChTwOjKRCyh5EBERv2GtSx7uv19t7iWFiImB8ePdCMPff0ODBjBwoFu7QSQZUs2DiIj4jW3b3P2X6h0kRZg9GypVgqefhrx53Zy76dOVOEiypuRBRET8xuzZ7qfqHSRZW7sWHnrIZbnHjrmRh+XL3ZCZSDKn5EFERPzGrFlQqJBbWVok2dm719UyVKgAS5fC++/D5s3QsiWk0S2ZpAyqeRAREb8QFQVz58KTT6qTpSQzJ064OoYPP3Q1Dm+8Ad26Qe7cXkcmctWUPIiIiF9YvhxOnlS9gyQjERHwxRfQu7dbgKRlS9dNqVAhryMTuWYaIxMREb8wa5YbcdC0cfGctTBpEpQuDa+8AmXLQnCwq21Q4iApnJIHERHxC7NmwZ13Qp48XkciqdrChXDPPfD445Ahg+ueNGeO66ok4geUPIiISIp36pSrP9WUJfHMli3QuDHUrOn6BY8aBWvWuHUbVIQjfkTJg4iIpHh//OEKppU8SJI7eBBeeMFNUZo9G/r2ha1boV07rVQofkkF0yIikuLNmgWZMrnZIiJJ4swZ+OADGDwYwsLgueegZ0/In9/ryER8SsmDiIikaNbCtGlQqxZkzOh1NOL3oqLgq69covDPP9CkCfTvD8WKeR2ZSJLQtCUREUnR/vgDduyAVq28jkT82rkstXx56NQJCheGRYvghx+UOEiqouRBRERStFGjIEcOaNrU60jEbwUHux7Ajz4KkZEuYVi0SPPkJFVS8iAiIinW8eOunX7LlpA5s9fRiN/ZuRNatIAqVWDDBhg2zP1s0kQdlCTVUs2DiIikWBMmuFrV9u29jkT8SkiI65o0bBikSwfvvgtvvQXZs3sdmYjnlDyIiEiKNWoUVKjgFocTuW5hYfDJJ/Dee3DyJDzzDAQFQYECXkcmkmxo2pKIiKRIq1fDypVu1EEzSOS6xMTAuHFQvLgbYbjnHvcHbORIJQ4iF1HyICIiKdKoUZAhg7osyXWaPRsqV4annoK8eWHOHJg+HcqW9ToykWRJyYOIiKQ4oaHui+KmTSFXLq+jkRRp7Vp46CG3LHlICIwfD8uXu65KInJZSh5ERCTFmTLFdVpSobRctb17oV07VyyzdCm8/z5s3uxadqXRbZHIlahgWkREUpxRo9waXbVrex2JpBgnTsCgQfDhhxAdDa+/Du+8A7lzex2ZSIqi5EFERFKUHTtg7lzXSVNfFMsVRUTAF19A795w5IgbYejXDwoV8joykRRJf+2KiEiK8vHHrvV+27ZeRyLJmrVuBcHSpeGVV1wBdHCwq21Q4iByzZQ8iIhIinH4MHz5pWuMow6aclmLFrl2q48/7lpyTZ/uuihVquR1ZCIpnpIHERFJMT7+2K3j1bWr15FIsrRlCzRpAjVqwO7dbp2G1auhQQMtBiKSSJQ8iIhIinDiBAwb5tqzFi/udTSSrBw8CC+84KYozZoFffrAtm2uHVc6lXeKJCb9HyUiIinCZ5+5BKJbN68jkWTjzBkYMsR1UQoLg+eeg549IX9+ryMT8VtKHkREJNkLDXUdNuvXhzvv9Doa8VxUFIwZ4xKFAwfcVKX+/aFYMa8jE/F7mrYkIiLJ3ujRcOiQRh1SPWth2jQoXx46dnRdkxYuhB9+UOIgkkSUPIiISLIWGelmpVSvDjVreh2NeCY4GO6/Hx591P2h+OEH11WpenWvIxNJVZQ8iIhIsjZhAvz9t1sMWA1zUqGdO93CblWqwIYNrmp+wwY3VUl/IESSnGoeREQk2YqKclPZy5eHhx7yOhpJUiEhbhnx4cMhbVp491146y3Int3ryERSNSUPIiKSbI0a5Vr3T5miL5lTjbAw+OQTeO89117rmWegd2+tCiiSTGjakoiIJEunT0OvXm69r0aNvI5GfC4mBsaNc4t4vPUW3H03rFnjMkglDiLJhkYeREQkWfrgA7f2148/atTB782ZA126wKpVrhfv6NFQp47XUYnIJfhs5MEYM9oYc8gYs/4y+1sZY9YaY9YZYxYbY8rH2bcrdvtqY0ywr2IUEZHk6Z9/YPBgePxxuOsur6MRn1m3zhWzPPCAq3EYNw6WL1fiIJKM+XLa0higfjz7dwL3WmvLAn2AERftv89aW8FaW9lH8YmISDIVGAjh4W7au/ihvXuhXTtXCb90qcsUN2+GVq0gjWZUiyRnPpu2ZK2db4wpFM/+xXFeLgUK+ioWERFJOTZtgpEj4YUXoGhRr6ORRHXyJAwc6JYLj46G115zXZRy5/Y6MhFJoOSS3rcHZsR5bYHfjDErjDGdPIpJREQ80K0bZM4MPXp4HYkkmogItz5DkSJuOKlxYzfS8MEHShxEUhjPC6aNMffhkocacTbXsNbuM8bkB2YZYzZba+df5vxOQCeAW2+91efxioiI78yfDz/9BP36Qb58Xkcj181amDwZ3n4btm+H2rXdFKXKmpEsklJ5OvJgjCkHjAQaWWuPntturd0X+/MQMAWoern3sNaOsNZWttZWzqd/aUREUqzISHjxRbjlFujc2eto5LotWgT33APNmkGGDDB9Osydq8RBJIXzLHkwxtwKTAaestZujbM9izEm27nnQF3gkh2bRETEfwwdCuvXu5+ZM3sdjVyzLVugSRO3QMfu3a6AZfVqaNBAPXdF/IDPpi0ZY74BagN5jTF7gV5AAIC19nOgJ5AH+NS4v0yiYjsr3QBMid2WDphgrf3VV3GKiIj39u51C8I98ogWhEuxDh6EoCAYMQIyZYI+fVxBdJYsXkcmIonIl92WWlxhfwegwyW27wDK//cMERHxV507uwWGhw7Vl9MpzpkzMGQIDBoEoaHw7LMuE8yf3+vIRMQHPC+YFhGR1G3GDPjhB1ckXbiw19FIgkVFwZgx0LMnHDjgpiq99x4UL+51ZCLiQ0oeRETEM6Gh8NJL7n7zjTe8jkYSxFr45Rfo2hU2bIC774bvv4fq1b2OTESSgJIHERHxzIABsGMHzJnjGvJIMhccDF26wO+/uxX8Jk1yIw6aayaSaiSXReJERCSV2bDBJQ8tW8L993sdjcRr5073H6pKFdcS65NPYONGaNpUiYNIKqORBxERSXJRUdC2LWTPDh995HU0clkhIa4YZdgwSJsW3n0X3nrL/YcTkVRJyYOIiCS5wYPdDJjvvtNK0slSWJhLGPr1gxMn4JlnXBvWggW9jkxEPKZpSyIikqTWr4fAQHj8cfeQZCQmBsaNcxXsXbq4Yug1a2DUKCUOIgIoeRARkSQUFeW+xM6RA4YP9zoaucCcOVC5Mjz1FOTJA7Nnu65KZct6HZmIJCNKHkREJMkMGuSmK336qaYrJRvr1kGDBvDAA3D0qBt5CA6GOnW8jkxEkiElDyIikiTOTVd64glo1szraIR9+6B9e6hQAZYscYUoW7ZAq1aQRrcHInJpKpgWERGfCwtz96Q5c7o6XPHQyZMwcCB8+CFER0Pnzq6LUu7cXkcmIimAkgcREfG5t9+GtWth+nRNV/JMRASMGOG6Jh05Ai1auG5KhQt7HZmIpCAalxQREZ/65Rf4+GN49VU3tV6SmLXwww9QujS8/DKUKQPLl8OECUocROSqKXkQERGfOXjQdVcqV86tJi1JbNEiqF7dFZmkTw/TpsHcua6rkojINVDyICIiPhET41aRPnkSvvkGMmb0OqJUZMsWaNIEatSAXbtg5Ei3XsPDD4MxXkcnIimYah5ERMQnhg6FX391bVlLlfI6mlTi4EHo3Ru++AIyZYI+feC11yBLFq8jExE/oeRBREQS3fLl0LUrNGwIzz3ndTSpwJkzrnvSwIEQGgrPPgs9e8INN3gdmYj4GSUPIiKSqEJC4PHH4aab4KuvNEvGp6KjYcwYlyjs3w+NG0P//lC8uNeRiYifUvIgIiKJJiYGnn7a3ccuWqSlA3zGWtfGqmtX2LAB7r4bvvvOFUeLiPiQCqZFRCTRDBjg1nL46COoUsXraPxUcDDUqQOPPALh4TBp0r9dlUREfEzJg4iIJIq5c6FHD7f22PPPex2NH9q5E1q2dFnZunXwySewcSM0baq5YSKSZDRtSURErtv+/S5pKF7cLWKse9lEFBLiVoIeNgzSpIF33oG33oIcObyOTERSISUPIiJyXcLD3Rpkp0/DvHmQNavXEfmJsDCXMPTrBydOuEUzeveGggW9jkxEUjElDyIics2shRdfhCVLXL2u1nNIBDExblW9d9+F3bvhoYdcC9ayZb2OTERENQ8iInLtPv0URo1y97mPP+51NH5g7lxX09C6tWtVNXu266qkxEFEkgklDyIick3++AM6d3ZNf3r39jqaFG7dOmjQwHVROnIEvv76365KIiLJiJIHERG5art3uzqHokVh3DhXxyvXYN8+aN8eKlRwc78GD4YtW9zIgy6qiCRDqnkQEZGrcuYMPPYYREbCTz+p6c81OXkSBg2CIUPcKtGdO7suSnnyeB2ZiEi8rpg8GGMyAo8ANYGbgVBgPTDdWrvBt+GJiEhyEh0NrVrB2rUwbRoUK+Z1RClMZCR88QUEBbnpSS1auG5KhQt7HZmISILEmzwYY4JwicPvwJ/AISAjUAwYEJtYvGGtXevjOEVEJBl4+2032jB0qGsCJAlkLUyeDN26wbZtULu2m6JUubLXkYmIXJUrjTwss9b2usy+IcaY/MCtiRyTiIgkQyNGwPvvw0svwcsvex1NCrJ4Mbz5pqtpKFXKDdk0aKCV9EQkRYq3GstaO/3ibcaYNMaY7LH7D1lrg30VnIiIJA+zZ8MLL7jRhg8/9DqaFGLrVmjaFKpXh1274MsvYc0aePhhJQ4ikmIlqJWDMWaCMSa7MSYLrt5hozGmi29DExGR5GDjRtdZqVQp+PZbSKdWG/E7dMitnFeqFPz2m+tju20bdOigiyciKV5C+8CVstaeBB4DZgCFgad8FZSIiCQP+/e70YaMGd1sm+zZvY4oGTtzBvr2hSJFXFH0s8/C9u3QowdkyeJ1dCIiiSKhX4EEGGMCcMnDMGttpDHG+i4sERHx2smTbmp+SIhbEO5WVbhdWnQ0jBkDPXu6bOuxx2DAAChe3OvIREQSXUJHHr4AdgFZgPnGmNuAk74KSkREvBURAU2awIYNMGkS3Hmn1xElQ9bCL79A+fJuStKtt8KCBTBlihIHEfFbCUoerLVDrbUFrLUNrLMbuM/HsYmIiAdiYqBdO5gzB0aOhHr1vI4oGVqxAurUccXP4eHw/feuq1KNGl5HJiLiUwmatmSMyQA0BQpddE5vH8QkIiIe6tYNxo93a5e1aeN1NMnMrl3w7rswYQLkzQuffAKdOkH69F5HJiKSJBJa8/ATcAJYAYT7LhwREfHSkCEwaBA895xLIiRWSAi8955LFtKkgXfegbfeghw5vI5MRCRJJTR5KGitre/TSERExFNffQVvvOHasg4bpqUIAAgLcxejXz84cQLatnWtVwsW9DoyERFPJLRgerExpqxPIxEREc9MmeJqfh98EMaNg7RpvY7IYzExbu5WiRLQpQvcdResXg2jRytxEJFULaHJQw1ghTFmizFmrTFmnTFmrS8DExGRpDF3LjRvDlWrwuTJkCGD1xF5bO5cqFIFWreG3Llh1iyYMQPKlfM6MhERzyV02tJDPo1CREQ8sXw5NGoEd9wB06dD1qxeR+Sh9etdHcOMGa7t6tdfQ8uWrsZBRESAhLdq3R3bnjUUsHEeIiKSQq1e7dqw5s0LM2e6L9lTpX37oH17t17DkiUweDBs2eJGHpQ4iIhcIKGtWhsCHwA3A4eA24BNQGnfhSYiIr6yfj088ABkyeJm6RQo4HVEHjh50rWWGjIEoqLg1VddG9Y8ebyOTEQk2UroVyp9gLuArdbawkAdYOmVTjLGjDbGHDLGrL/MfmOMGWqM2R5bS3FnnH1tjDHbYh/qNC4ikkg2bXLrm2XIAPPmQeHCXkeUxCIjYfhwKFrUdVF67DE30jBkiBIHEZErSGjyEGmtPQqkMcaksdbOAyon4LwxQHwtXh8C7oh9dAI+AzDG5AZ6AdWAqkAvY0yuBMYqIiKXsXUr3H+/a8M6d667f041rHUV4aVLw0svQalSsGyZW/At1WVQIiLXJqHJw3FjTFZgPjDeGPMxcOZKJ1lr5wMh8RzSCBhrnaVATmPMTUA9YJa1NsRaewyYRfxJiIiIXMFff7nEITraJQ7Fi3sdURJavBiqV4emTSEgAKZNc8MuVap4HZmISIqS0OShEa5Y+jXgV+Av4NFE+PwCwJ44r/fGbrvcdhERuQa7drnEITQUZs92X7qnClu3uoShenV3Eb78EtasgYcf1ip4IiLXIEEF09bauKMM//NRLNfEGNMJN+WJW2+91eNoRESSnz17XOJw8qQbcUgVyxUcOgRBQfDFF5Apk1sV+vXXXYW4iIhcs3hHHowxC2N/njLGnIzzOGWMOZkIn78PuCXO64Kx2y63/T+stSOstZWttZXz5cuXCCGJiPiPffvgvvvg6FH47TeoWNHriHzs7FlXBF20qEscOnWC7duhRw8lDiIiiSDe5MFaWyP2ZzZrbfY4j2zW2uyJ8PlTgadjuy7dBZyw1h4AZgJ1jTG5Ygul68ZuExGRBPrnH9dV6eBBt46DX0/vj46GUaPcanfdu7tffMMG+PRTuOEGr6MTEfEb8U5biu16dFnW2viKoTHGfAPUBvIaY/biOigFxJ77OfAL0ADYDpwFnjn3vsaYPsDy2LfqfaXPEhGRf+3f7+6f9+xxicNdd3kdkY9Y61aEfustlyzcdRdMnAg1angdmYiIX7pSzcMK3ErSBrgVOBb7PCfwNxBvbztrbYsr7LfAi5fZNxoYfYX4RETkIrt3/zviMGOGH99Hr1gBXbq4rklFisD337viaBVCi4j4zJWmLRW21t4OzAYetdbmtdbmAR4BfkuKAEVEJOG2b4eaNV2Nw+zZUKuW1xH5wK5d0KoVVK4M69bB0KGwcSM0a6bEQUTExxLaqvUua+0v515Ya2cA9/gmJBERuRYbN7pkITTUfRlfrZrXESWykBB48023QMXkyfDOOy5bevllSJ/e6+hERFKFBLVqBfYbY7oD42JftwL2+yYkERG5WqtXw4MPQrp08McffraOQ1gYDB/uuigdPw5t27rWqwULeh2ZiEiqk9CRhxZAPmBK7CN/7DYREfHYsmWuHWumTDB/vh8lDjExMH48lCjhRhyqVXNZ0ujRShxERDyS0EXiQoBXfRyLiIhcpQUL3GLJ+fK5BeBuu83riBLJ3LmuGHrlSqhQAUaOhAce8DoqEZFUL0HJgzEmH/AWUBrIeG67tfZ+H8UlIiJXMHs2NGzoEobZs6FAAa8jSgTr10PXrvDLL3DrrfD119CyJaRJ6EC5iIj4UkL/Nh4PbMa1Zg0CdvHvGgwiIpLEpk2DRx5xa6L98YcfJA779kGHDlC+PCxaBIMGwZYt0Lq1EgcRkWQkoX8j57HWjgIirbV/WGvbARp1EBHxwNix8NhjULas66qUP7/XEV2HkyfditB33OF+sVdfhb/+clOWMma88vkiIpKkEtptKTL25wFjzMO4Tkvxrj4tIiKJ7/333X11nTowZQpky+Z1RNcoMhJGjICgIDh8GJo3h/feg8Lxrj0qIiIeS2jy0NcYkwN4A/gEyA685rOoRETkAjExrhTg/ffhySfhf/+DDBm8juoaWOuynrffhm3b4N57YfBgqFLF68hERCQBrpg8GGPSAndYa6cBJ4D7fB6ViIicFxnpygHGjoWXXoKPP06hZQCLF7thk8WLoWRJ+Pln1ypKq0KLiKQYV/znx1objdZ0EBHxxJkzrr5h7Fjo0weGDk2BicPWrdC0KVSvDjt2uOlKa9e6im8lDiIiKUpCpy0tMsYMAyYCZ85ttNau9ElUIiLC0aPu/nrZMvjiC+jUyeuIrtKhQ24l6C++cMXPvXvD669DlixeRyYiItcooclDhdifveNss6jjkoiIT+zZA/XquS/qv/8emjTxOqKrcPYsfPghDBzonnfqBL16wQ03eB2ZiIhcp4SuMK06BxGRJLJpE9St67qYzpzpaopThOhoV8ndowfs3+/mW/XvDyVKeB2ZiIgkknhnzhpjWhtjLnuMMaaIMaZG4oclIpI6zZ/vSgOiotzzFJE4WOtWhK5QAdq3dytDL1jguiopcRAR8StXGnnIA6wyxqwAVgCHgYxAUeBe4Ajwtk8jFBFJJSZMgGeecUsdzJiRQpY8WLEC3noL5s6FIkXcHKumTVUILSLip+IdebDWfgzcCXwD5APqxL7eBzxlrW1qrd3m8yhFRPyYtdCvH7RqBXff7TqZJvvEYdcuF3Dlyq5z0tChsHEjNGumxEFExI9dseYhtlXrrNiHiIgkoshIeO45GD0aWreGkSOT+eJvx465TOeTT1zP2G7d3Op1OXJ4HZmIiCSBhHZbEhGRRHbiBDz+OMya5WqMg4KS8Zf24eEwbJhLHI4fhzZt3MITBQt6HZmIiCQhJQ8iIh7Ys8ctrrxpkxt1eOYZryO6jJgY+PZbePddN1Wpfn3XgrVcOa8jExERDyh5EBFJYitXusXfzpxxhdEPPOB1RJcxbx506eKKoitUcEMkyTZYERFJCvEmD8aY1+Pbb60dkrjhiIj4t+nT4cknIXduWLQIypTxOqJLWL/e1TH88gvccguMHeuKo9PE22NDRERSgSv9S5AtzuPNi15n821oIiL+w1r46CNo2BCKF4elS5Nh4rBvH3ToAOXLu8xm4EDYuhWeekqJg4iIAFcYebDWBp17box5LO5rERFJmIgIePFF10mpcWP3RX7WrF5HFcfJkzB4MHzwgVud7tVXXY1DnjxeRyYiIsnM1dQ8WJ9FISLip44ccWumzZ/v7sd7905GX+JHRsKXX0JgIBw+DM2bu25Kt9/udWQiIpJMqWBaRMRHNmyARx+F/fth/Hho2dLriGJZC1OmwNtvw7ZtcO+9buShShWvIxMRkWTuSgXT6/h3xKGoMWbtuV2AtdaqV5+IyCVMnw4tWkCWLPDHH1CtmtcRxVq82HVQWrwYSpaEn392PWOT7QITIiKSnFxp5OGRJIlCRMRPWOtKB956CypWhJ9+SibrqG3b5laD/uEHuPFGGDHCLS6RTgPQIiKScFcqmN6dVIGIiKR04eHw/PPw1VfQrBmMGeNGHjx16JArtPjiC8iQwS1j/cYbySAwERFJia40bekUly6UPjdtKbtPohIRSWEOHnSF0YsWQc+e0KuXx4XRZ8/Chx+6dqtnz0KnTi6oG27wMCgREUnprjTycH4tB2PMKmttRd+HJCKSsixbBk2aQEgIfPONa1rkmeho+N//oEcPV6n92GPQvz+UKOFhUCIi4i+u5nsxtWoVEbnI6NFQs6YrHVi82MPEwVqYMQMqVID27d3K0PPnu65KShxERCSRJJdu4yIiKcq5hd/at3fJQ3Cwu2/3xMqV8MAD0KABhIbCd9/BkiUuMBERkUR0pZqHJnFe5rzoNdbayT6JSkQkGTt40BVEL1zoao8HDPCoadGuXdC9u1tEIk8eGDoUnn0W0qf3IBgREUkNrvTP3aNxnv9x0WsLKHkQkVQlbn2DZwu/HTsG773nkoU0aVwL1q5dIUcOD4IREZHU5EoF088kVSAiIsndV1+5Vqw33ujqG5J8mlJ4OAwbBv36wfHj0KYN9OmTTBaSEBGR1CDemgdjzFFjzC/GmHeNMfcZYzInVWAiIslFRAS89BK0awc1anhQ3xAT49o4lSgBb74JVavCqlUum1HiICIiSehKBdOFgY+AAKAbsMcYE2yM+dgY84SvgxMR8drevXDvvTB8OLz+Ovz6K+TNm4QBzJvnkoWWLSFnTvjtNxdE+fJJGISIiIhzpWlLJ4HfYh8YY7IAzwCdgZeA73wcn4iIZ+bMca1Xw8Jg4kR4Iim/MtmwwdUxTJ/u2q6OHQutWnm88pyIiKR2V5q2dLMxppkxZogxZgHwK1AU6A7cnhQBiogktZgYt65a3bqQL58rkk6yxGH/fujQAcqVc+2cBg6ErVvhqaeUOIiIiOeu1G1pL7AS+BB421ob4fuQRES8c+yYq0P++Wc36vDll5A1axJ88KlTMGgQfPABREXBK6+4Nqx58iTBh4uIiCTMlZKH6sDdQGPgdWPMLmBJ7CPYWhvu2/BERJLO6tXQtCns2eO6oL70Ehjj4w+NjHQZSmAgHD7sMpZ+/eB2De6KiEjyc6Wah3OJwhAAY0wh3FoP/wMKAhl9HJ+ISJL46it44QX3Rf8ff8Ddd/v4A62FH3+Et99205Jq1YJp01xxtIiISDJ1xQm0xpgSxph2xpiRwAzgHWAdru5BRCRFCw2Fjh1dG9bq1V0HVJ8nDosXu56vTZpA2rRujtTvvytxEBFJYQIDA+N9nVKPiZe19rIP4AiwFvgCeBooGt/xlzi/PrAF2I6rmbh4/4fA6tjHVuB4nH3RcfZNTcjnVapUyYqIJNTmzdaWK2ctWPvOO9ZGRfn4A7dutbZpU/eBN95o7YgR1kZG+vhDRUSSv169el1xW1Iek9Dz3K305V8n12MioyNtaGSoPRV+ypLRvb7omGB7mftt4/ZfmjEmh7X2xNWlI+fPTRubEDyIK7xeDrSw1m68zPEvAxWtte1iX5+21l5VmWLlypVtcHDwtYQrIqnMN99Ap06QIQN8/TU89JAPP+zwYejdGz7/3H3gW2+5RSOSpBJbRFK7wMDAS37bHHdbQo651vMScowxhovvSS/elhTHWGuJttFEREeQJVsWjoQcISomisiYSG657Ra2bt96/nVUTBSVqlRi4eKF518/WO9Bpk6bev51ZHQkrZ9uzcjRI89ve/nVlxn0/qALjun7Xl/eeOuN868//fxTnunwzAWfNWnyJB5+9OHzr+f+Ppe7q999wfts2LSB2++4/fzrAwcPkDNPTqJios5vi7bRXGzVs6uocGOFuNdjhbW28n8OhCsmD0MvuxOw1r4Sz7l3A4HW2nqxr7vFntP/MscvBnpZa2fFvlbyICKJLjQUOneGESPcNKVvv/XhIs1nz8JHH8GAAe55x47QqxfceKOPPlBEkitf3XQn5Y351Z5nrSUiOoKMWTNyJOQIEdERRMZEEhEdwR0l7mD12tXnt1WvVZ2Zs2cSGe32R0RH0LxVc0aNGXV+2yuvvUL/Qf3dObHbBn0wiBdfefH8+4wZO4ZmzZud3x8ZE8nsubO5q8Zd57et27CO24vdfsH7HDtxjPSZ0xMR7UFjUYubbxMT53G9rxN6zLnHOuAM9OrVi8DAwOtKHtrEeRkE9Lrgd7X2f/Gc2wyob63tEPv6KaCatfalSxx7G7AUKGitS4eMMVG4KUtRwABr7Y+XDTSWkgcRic+WLW69hrVrXZ1ynz6Q7ko9565FdDT873/Qo4dbt6FRI5dAlCjhgw8TkWuR1N+0+/pb9BgbQ3hUOOHR4eTKm4u/9/1NeHQ44VHhlKlQhsV/Lj7/Ojw6nEZNGjHum3Hnt73wygsMGDzggmM++OgDOj3fyW2L3T5l6hTq1Ktz/vXylcspUabE+XPCo8I5evwoAZkCiIyJvMzVTwTnbrgvfsQk4rZ4bsIfb/Y4rVu0ptGjjfhtxm+kS5OOdGnSUatGLZb/uZyANAGkS5OOgLQBFL+jOH/v/Pv863x58nH6xOnzr9OYNJ6MslzhmGtLHi56k1XW2ooJOpirTh664hKHl+NsK2Ct3WeMuR2YC9Sx1v51iXM7AZ0Abr311kq7d+9OaIgikookyTQla+HXX920pPXroVo1GDwYatb0wYeJpA5efht/qW3xHXPuBj5zjszsO7iP0MhQwqLCCIsKo/LdlZk1bxZhUWGERobyRMsn+GL0F+f3h0aGEtg3kM5vdiY0yp33v/H/o2HThuf3h0WFsXzVcoqWLHp+29ETR0mXMR1RMVEJv6hXcu6GOeoKPxN6zLnXl7lhb92iNeP+N46Ffywkfdr0BKQNIH3a9JQuUZpdf+06vy1f7nyEng4lIE0AadOkver/PldzjC/fO4Ucc9nk4Wq+c0tYlvGvfcAtcV4XjN12Kc2BFy/4MGv3xf7cYYz5HagI/Cd5sNaOAEaAG3m4yhhFxM8l2TSllSuhSxeYOxeKFIHvvoNmzZJgoQgR7/nyG/ugoKALtl38+krHnJs6EzQwiI6vd+Rs5FnORp6FgjB7x+zzr89GnoWqMGjRoAu3NYInJz357+v2UPGLihfc9PM2ZOib4d8pL12hwJACF16kdvDg1w/++7oJPDvt2QuPuQc++uMjd6MdBdwIU/+YCpH8uy0Ktv+x/d9t0RAVFXXZG/pmjZsx6dtJzJg2gwxpM5AhXQbSp01PlYpV2LJxy/ltN+W7iTMnz5AhbYbL3phfaltiHTMuaBzVb61+4fUIgdty3vbv63DImC55rRLQq1eveF+n1GPiczUjDyuttXcm+I2NSYcrmK6DSxqWAy2ttRsuOq4E8CtQOLa6G2NMLuCstTbcGJMXt9ZEo8sVW5+jaUsiEtemTW7NNZ9OU9q9260EPW6cWySiZ0947jlInz6RP0gk8SWXOfUxNoazkWfJlicb23Zv43TE6fOPhxo9xFfjvzr/ulvPbrze9XXORJ45f0P/w9QfuPeBe8+/3rB1AzcUvOH8MTE25uovTmQ8j3M38hfd1F9qW7PHmvF0i6dp2KAh8+fOJ1NAJjKmy0jZkmXZu3MvGdNlJFNAJjKkzUC6tOmS27fPSfbeSVkDkphT1vzV9dQ8nOLfEYfMwNlzu3Ctn7Jf4YMbAB8BaYHR1tp+xpjeuPZPU2OPCQQyWmvfjnPePbj2sDG4tSg+staOusLvqeRBRAA3e2jUKHjlFciSBcaO9cE0pWPH4L333FLUadK44Y2334YcORL5g0T+y1fz8C+17eLX1lrSZEjDgZADnAw/ycnwk1SpXoWpv0694Kb/9bdf563ub7nXkacZ+81Y6j5al9MRpzkTcYbTEaf5a89fZMmVhTORZxL+y8cQ/4193EfEpbc/0eQJvhv3HfPnzCdzQObzj0IFCnHm+BkypstIGpMmQdcjJRyT1DfU1/reknwkSs1DSqDkQUSOH3e1Dd9/D3XquMTh5psT8QPCw2H4cOjb131YmzauDestt1zxVJGLJdZNf0JvMk+Fnzp/w38y/CTValXjh2k/XLCtR98edHq5Eycj3OtfZv9CuarlLjgmwfPro3A38NfweOrJp3ihwwvcXeludm7ZSdb0WcmaPiuZAjKlyG/avf4WXeRqKHkQkVRh0SJo2dI1OOrb15UgpEmTSG8eEwMTJ8I778CuXVCvHgwcCOXLJ9IHSEp3LTd1V9tN52T4SY6FHuP2UrczZ/EcjoUe43jYcTq83IF3+7zrXocf51joMWbMnUGZymXO3/AfP3vcjeVfSSQQnsBHGDRv0pxv//ctyxctP3+DnzV9VnJlyYWNTtnfxl9q27UeI5KSKHkQEb8WHQ39+kFQEBQq5DorVa2aiB8wb57LRFasgAoVYNAgePDBK54mKZOvRwOOhR7jyNkjHD17lLvuu4vxk8dzPMzd8B8LO8YHwz+gSasm57et2rSKnDfl5HjocTdp+HJigLCLHpe56W/ycBPatWzHIw8+wuo/V5M9Q3ayZ8hOtgzZyJAuQ7KagqNv40WSnpIHEfFbf/8NrVvDggXu5/DhkD3eaqyrsGEDdO0K06e7aUn9+kGrVok4nCFJLTFHAyKjIwkJDeHo2aMcDT1KzXo1GTl+JEdDj3L07FEGDRtEoxaNzr8+cvYIh08fjv/b/0gglAsTgDiv69aqS/NGzWnXsh3zZswjV8Zc5MyYk0I3FiI6NPr8PP3LxeyraTr6xl7Evyh5EBG/9MMP0KEDREXBp5/CU08l0hvv3+9Wgh49GrJlc1OVXn4ZMmVKpA8QX7iW0YG4285GnuXQmUMULlOYn+f+zKEzh84/PvziQxo0a3B+xOCv/X9BfH8conAtRkJjf17ieYvHWvDNqG/YvGozOTPmJGfGnGRIl8HTb/UvtU3f4oukPkoeRMSvnD0Lr73m1m6oUgUmTICiRRPhjU+dclOSPvjAZSQvvujasObJkwhvLgmVaNOG0hgOnjp4QRLQokML3un3jnt91m1bunYp6XOlJ8JEXDqgcOJNBJo2aMqzTz1L3Zp12b1pN3ky5SFzQGbSpEmT7KfyiIhcipIHEfEba9e6tRs2bXILOffpkwhLKkRGwpdfQmAgHD7sPqBfP7j99sQIWeJIjGlDkdGRpM+dnmUbl7H/1H4OnD7AgVMH6P1hbx5u/vD5bf+c/OfSU4RigDOXfjSs05CpE6aybN4y8mfJT74s+cgckDnZtdAUEfElJQ8ikuJZ6+oZ3nwTcuVyLVivu2bZWvjxR7c+w9atUKsWDB6cyNXWqdvVJAbRMdEcOH2AW0rfwuTfJl+QGIz+fjTla5TnwOkDHD5zGMtF/3ZZXAJwCjgd5+dpt71Nsza89eJblL6tNNFnrr82ILFGA0REkiMlDyKSoh086Gobpk2DBg3gq68gf/7rfNMlS1wHpUWLoGRJ13b1kUfAxNfORuK6mqlEMTaGw2cOc2PxG5k8ezJ7Tu5hz4k97Dm5h4kzJpL9luyctCf/O1JwbpTgFBcmBnGev9bxNQb1HERA2oBEKRDWaICIpHZKHkQkxZo61SUOJ0+6+/tXXrnO+/tt26BbN1dtfeONrr9ru3aQLl2ixewPrrbG4HjYcXIVysXP838+nxTsObmHcVPHkeu2XByLPgYXX+Io4CRw4t+fD9d8mOnfTGfF7yu4OdvN5Mucj7Rp0iZpgbCISGqn5EFEUpzTp11R9MiRbh22ceOgTJnreMPDh91K0J9/DhkyuIKJ11+HrFkTLeaUKkHFx+kNG/ZtYOexnew6voudx3fywagPqHh/RXYe38nxsOMXvmkMLiGIkxzUv6c+v078leA5wdyS4xbyZc6HMSZJpw2JiMiVKXkQkRRlyRLXdnXHDnePHxTk7vevydmz8NFHMGCAe96xo2vDeuONiRlyspXQAuXomGj2n9rP9pDtbA/ZTse3OtLi+RbsPL6Tncd2cvDMwQvfOBI4HudxLPZnbLLQ4/Ue9A7srSJiEZEUSMmDiKQIkZFucOC999yabGPHuhrmaxId7d6gRw/Ytw8aNYL+/V19g5+60ghCjI1h/6n93FL+FkZMGsG2kG1sD9nOlD+mkKlAJkKjQv89MRo3YnCcC5ODY/B6+9cZ3GswadOk9UliICIi3lLyICLJ3pYtboXo4GBo0wY+/hhy5LiGN7IWZs50Qxbr1rnOSYMHX0cWkjxcTYvTkNAQNh3exKYjm+j4dkcat2/MtpBt/BXy14UJQhQuKQgBjrqfTz38FL0796ZwnsLYaN/UGIiISPKm5EFEki1r4bPPXAvWTJncwm9Nm17jm61c6ZKGOXOgSBE30tCsWYrsoHSlFqfWWtLkTMPMlTPPJwpf/PAF+Uvn59CZQ/++0SUShPPPT0Kvnr0ICgpSjYGIiJyn5EFEkqUDB1yjo19/hfr1YfRouOmma3ij3bvdStDjxrnVoHv2hOeeS4TV45LGlVqc7ji2gzuq30G/Ef3YdGQTmw5vYvORzZyJPPPvCaHAYeCIe7R4sAV9X+1LkTxFsDFKDEREJOGUPIhIsjN5MnTqBGfOwPvvwwsvXMMAwbFjrkBi6FBIkwY6d3YLvl3TfKekc7lRhaNnj7Lu0DrWHVzHK/1eocCdBdgXuQ/i5kAncAnC4Qt/9nyzJ72DeifaugYiIpJ6xZc8qLG5iCSpkyfh1VdhzBioVMkNFpQocZVvEh7ulpvu2xeOH4enn4Y+fVyVdTJzqRvzoL5BNHm+CesOrmPtwbXQCgoOKci+U/v+PagE7Nu5Dw5Cw7saMvXLqZzccZJsGbKdP+TiJKB3UO//fH6vXr2uuE2Jg4iIJJRGHkQkycyZ46Yp7d0L77zjZhcFBFzFG8TEwMSJ7uRdu6BePbdyXPnyvgr5qv1nVCHAsGTnElbsX8GKA+6xdv9aSBt7QBRu9OAgcAhaP9iawW8O5qZsNyVKJyMREZGrpZEHEfHU6dPQtSt8+ikUKwaLFsFdd13lm/z+O3Tp4toxlS8Pv/0GDz7oi3AT7OKb9dDIUIJGBZGvQb7ziQLvwN2j7nYHnAH2A//gkoWD0P2F7vT9ou9/EoOLaQRBRESSA408iIhPLVgAbdvCzp2uJKFvX8ic+SreYMMGl3lMn+6mJfXrB61auRoHH7pSa9SwqDAyFcrE8CnDCd4fzIoDK9hwaAPRNtodfC5ROBD7cz/0fK0nQYFBanEqIiLJmgqmRSTJhYbCu++6xZ0LF4avvrrKpRb273crQY8eDdmyualKL7/s+rkmgbg39NZa/j7xN4VqFOLV919l6d6lrDywksiYSAAy28yc3X7230ThAHDCjQwkpA2qEgUREUlOlDyISJL680+30NuWLa6L0sCBkDVrAk8+dcot6vbBB27J6RdfdFlI3rw+jTnuDXxoZCiZi2Zm0IRBLNm7hKV7l3Lg9AEA0tl0RO2Ogr3APlyyEJsoBAYGalRBRERSPCUPIpIkwsMhMBAGDYKCBWHUKHjggQSeHBkJI0e6Nzh0CJ580k1RKlIk0eO8+Ob9eNhxcpXLRfWW1Vm0ZxEU4N+C5hBgDy5Z2IurVYjRqIKIiPgvJQ8i4nMrVrjRhg0boH17GDIEsmdPwInWwo8/uvUZtm51c5sGD4aqVRMttv90QMpu+Hbxtyz4ewEL/l7AuoPrsFgC0gRQ+ebK1Ly1JoNeGsShlYfIlyXfv+dpVEFERFIBdVsSEZ+JiHADBP36Qf78rq65QYMEnrxkieugtGiRW+xh6lR45JFrWC3uX5dcV+H9IEo9Xoq5O+cyd+dceAOa/9CcABtA5I5I2A38DZH7IlkSuYS6verCVi5IHC7lUh2QlDiIiIg/U/IgItds3Tq3Ptvq1dC6NXz8MeTOnYATt21zBdCTJsENN8AXX7gFINJd3V9Jl0wUgoLo/HZn5u+e/2+y0AWenPQkhOEShV3uZ+Q/kfTq0YvAsf+tVbgUtUYVEZHUTtOWROSqRUbCgAFuUedcueDzz6Fx4wScePiwO+mzzyBDBjfq8MYbV1FNfaFzN/wR0REs3rOYmdtnMuC7AaQpmIYYGwORwN/AztjHAejVI2G1CiIiIqmVpi2JSKJZudINEqxZA82bw9ChkC/+2T1w9qzr2TpggHveoYMrjL7xxqv67LgjDTuO7YDK0OjbRvy6+VciTAREA1EQMy8GdsK7bd+l79i+/0kMgoKC/vPel5qCJCIiIhfSyIOIJEhYmBs0GDjQ1TZ89hk0anSFk6KjYexY6NED9u1zJ/TvDyVLXvHzLp6SdCbiDFnLZKVKyyosD1kOeWJ3HAO2w5OVn2REtxHkyJhDHZBERESug7otich1WbrUjTZs2gTPPOOWYMiVK54TrIWZM+Gtt1xhRNWqroNSPKvE/acjkjHsObGHn7f8zM9bf2buzrmER4eTKV0m7it8H/WL1OeVh18h5nAMJk6BtTogiYiIXB9NWxKRa3L2rBs0+PBDt27Dr79CvXpXOGnVKlfLMGcO3H47TJwIjz9+xQ5KQUFB9OzVk5UHVvLzlp/hWbjlw1vczhBgC7ANQv8O5ZeoX6jSqwoc5YLEAdQBSURExJeUPIjIJf3xh1uv4a+/4PnnXblCvOs27N4N3bvDuHGQJ49rvfTcc5A+/X8OjTsSEB4Vzuwds+ERyBGUg9PmNMTgip1nAVuh5ws9Cfo1KEFFzUoUREREfEfTlkTkAqdOufXaPv3UDRyMGgW1a8dzwrFjro5h6FA3utC5M3TtCjlznj/kP1OS0hsmr5lMr4m9WBe+DjIC4cBfwBZ487E3eT/ofXVEEhER8YBqHkQkQX77DTp2hD17XA7Qpw9kyXKZg8PDXYbRpw8cP+4WfOjTB2655T+HGmM4GXaSX7b9wqRNk5i0ehKkh9yZcvNY8cdoWqopD5d8GBul1ZtFRES8ppoHEYnX8eNuuYXRo91Cz4sWwd13X+bgmBj47ju3yNvOnVC3LgwaBOXLAxfe4J8KP8VPW36C5pCrfy6iTTScBja5R8iuEG7pcQsNGjVwbVbjUO2CiIhI8qPkQSSVmzwZXnzRrd/WrRv07AkZM17m4N9/d8XQwcEuWZg5k8DFiwmMTRwAgvoGUbF5Rd799l02RG2AAOAmiP4zGjZCj2d60Gd6n/+MKmj1ZhERkeRP05ZEUql9++Cll+DHH6FiRfjyS6hU6TIHb9jgCiGmTXPTkvr2hVatIG1ajDFERUfxx+4/mLBuAqMWj4JMkDdzXp4s/SQtyrSgRqEa2Jj4pySJiIhI8qBpSyJyXkyMSxTeegsiItyMo9deg3SX+ttg/37o1cvNZ8qalVl16vDgzz9DpkxYa1mxPxjqQc7eOV2XpHBgK7AOjuw4Qt4eeaneoDpclCdoNWcREZGUScmDSCqyZYsriF6wAO6/H774AooWvcSBp065Rd0++AAiI+Hll6F7d+rmy8eB6BM8HdiIWYdnQX6gCpzefBrWwzvN3uG9Ke9pSpKIiIif0rQlkVTg3AjDue5JH3wAbdteYt22yEgYORICA+HQIdaXLk2Zn34iotAtTNs6jaZ9mpK2RFqibTR3FbyLtuXb8lzN57ChmpIkIiLiL+KbtpQmqYMRkaT155+ulqFHD2jcGDZtgmeeuShxsNYVP5QtCy+8AMWLw9KllD26gbu+bkWGbhlo+l1TuBmiF0TDMKi3px7PVn4Wwi78PE1JEhER8V+atiTip06fhnffhU8+gQIFYOpUePTRSxy4dKnroLRwIZQowanJ3zC+4DFGrHwenoNVaVfxeJXHaVuhLQ+XeBgbrSlJIiIiqZWSBxE/NGMGPPecW+ztxRehXz/Inv2ig7Zvd71ZJ02CG26gyY2Qb2ANxqxsQ8TaCPgHWAkR6yL4PvR7SvUqBTH//SwlCyIiIqmHkgcRP3LokOucNGEClCp1mcXeDh+GPn2IHj6csOwZmRjYkM9v3Mfyfw6Sad14WlZsyXOVnqNqgaqkSZNG9QsiIiJynmoeRPzAufarxYvD999DUBCsXPlv4hAYGAhnz0L//lC0KBu+H84D9WLI+2o07ZnK8nUrYAaE9g1lzGNjmDFyBuY/1dQaZRAREUntfDryYIypD3wMpAVGWmsHXLS/LTAY2Be7aZi1dmTsvjZA99jtfa21//NlrCIp1fr1borSokVw773w+edQokScA6Kj2R0URPSoL5mWZT8fd8zLvGwxEAUtyzXluUrPUePWGpccZVDxs4iIiMTls+TBGJMWGA48COwFlhtjplprN1506ERr7UsXnZsb6AVUxi0vtSL23GO+ilckpTl71i30PHgw5MgBX30FbdrE6aJkLcycyfF336Ds3XBHzaPszAycOAKzgZUw4ewEJjDhskmCRhpEREQkLl+OPFQFtltrdwAYY74FGgEXJw+XUg+YZa0NiT13FlAf+MZHsYqkKL/+6jqq7tzp1msYPBjy5v13/+fPPkvRP6fzY4F9fFUfzqYHdofDn9Dj8R70XtBb6zGIiIjIVfNl8lAA2BPn9V6g2iWOa2qMqQVsBV6z1u65zLkFfBWoSEpx4IAriJ440dU3zJsHtWv/u9/u2sXM/u356cxcfm0M6UlLi7It+d9LX2P3x58oaJRBRERErsTrgumfgULW2nLALOCq6xqMMZ2MMcHGmODDhw8neoAiyUFMDHz2GZQs6dZy690b1qxxiUNgYCARRw8x9p0GlBt8Ow/dPJdFN0Lvu95hz5v7GdNkLBz473uqnkFERESulvHVtAVjzN1AoLW2XuzrbgDW2v6XOT4tEGKtzWGMaQHUttY+G7vvC+B3a22805YqV65sg4ODE/PXEPHc2rXw7LNuLbc6dVwScccdbt/Jk4d5pH5+dlQ37MtqKXgQzi6CkA1AtDvmXJKgkQURERFJCGPMCmtt5Uvt8+W0peXAHcaYwrhuSs2BlhcFdpO19tx3og2BTbHPZwLvGWNyxb6uC3TzYawiyc6ZM67l6pAhkDs3fP01bNsWyB13BLL/xF6Gjn2Rz/75mZP14P7juRh5V2/q1X0BY4zqGURERMQnfJY8WGujjDEv4RKBtMBoa+0GY0xvINhaOxV4xRjTEIgCQoC2seeGGGP64BIQgN7niqdFUoNp0+Cll2D3bujQAQYOdAmEyRfE3puX8/W+X4g28MBWOL4Y5u4PYe5HL9Gr12GNMIiIiIjP+Gzakhc0bUlSun374NVX4Ycf3ArR1aqNZvTodqw8sJK+07syZd9sMkVCu61ZeL1uL25/5nVMunT/GWUIDAxUEiEiIiLXxKtpSyKSQNHRrpbhnXcgMhLeew/eeAMyFGnPku592Rywkxxh0OVPCP0TRp49Q95SZwhMm/aS76fEQURERHxByYOIx/78063ZsHIl1K0Lw4db9qb7gwbjg6ADHD67k34L0/BihU4Umfc5R6zlkzjnq2uSiIiIJBUlDyIeCQmBbt3gyy/hppsAnuC1Ye2pM64jf5s95DsN7y+CvMHQOzKGiNo3cPQS76NRBhEREUkqSh5EklhMDIwZAy+/fIbw8Cx0fs1y99O/8MTw73lowvcUPJuOT/6A9pnuofaSxfxpLW28DlpEREQEFUyLJKk1a9wUpcWLAebz8CvfM/3sMCgINx2D3gugyhrY+HhzWkyYgEmTRi1XRUREJEmpYFrEYydPQs+e8MknkCcPvPXZXAYtr8P03HBr1sz0mHqWeqvhlk8/h/btKZ/O/a+pegYRERFJTjTyIOJD1sK330KnTqc4cyYbxR4cwZabXoTCUeQ4CX3nQ4tVsLbGvTz6xx+c9qP/H0VERCRlim/kIU1SByOSWmzaBHXqQMuWcDrnd1T9pC5b7nmWGwpn5ON5Gdg7FF6q9Cx59uznvt9/502NMoiIiEgyp5EHkUR25gzUq7eQZctqkPG2tRRq9y7rIqaRL002ui5Jw/OzT5D5oYaUnDqVTX70/5+IiIj4B408iCQBa2HKFLcy9KKNN5P16QacalWeTSem8fJs2NH3FDVnnGBiyzbw0088qZEGERERSWGUPIhcp8DAQP76Cx5+GJo8/Q+n730RXipKWKF5vL23EIc+hlcXQtavJ1I1JoZnxow5f56IiIhISqJpSyLXISwMMmXqRfrsrxFVrT8xVYZAuijuWwFj50OmU7CsXj0emzmTcD/6f01ERET8l6YtifjAzz9DyXKhcE9WePV2YqoPonmaomwdEcAv06HgC13Jc+wYD/36K900RUlERET8gEYeRK7SK68MZcbMB9meaRnc/zbk+IfbtsFXc6D2P2Cefppbx47lbz/6f0tERERSDy0SJ5IIzpyB996DT6YXIU39FpB/DZUy3M7rX0DLXcCDD8KMQVChAu0KF/Y6XBEREZFEp2lLIvEIDAzEWvj+e7j9nrW893d9ePoRChQ4xIRVt7PsnR2U3gXMnAm//QYVKpw/T0RERMTfaORBJB5BQd8x+8+OLMrQAxqPIU1YWtrOhE+XHeBQNPzUqBFry5WjfN26XocqIiIi4nNKHkQu4eRJeCfoJNzfiEWV7iBdQDQvnyxL98/XkfYsZOjfn1tefZVbMmWisdfBioiIiCQRJQ8icfTqFcTqtaWYuu8vqD0Eah2m5Lr0fD8nghIn15P25VfI+/HHHHn7ba9DFREREUlySh5EYq1caen9XXp4oDtU2MqdMaXoN+Iw9fdHwBNPuGrpIkV4KWdOr0MVERER8YQKpiXVOlfUHBICzV4JptKwe6H5O9yUM4If/yhAcO+NZN4PLF0KEydCkSIXnCciIiKS2mjkQVKtoKA+ZLqhI+/OeYvoshNIkyErL/yckQ9X7WJbDHzbvDlbihWjVrVqXocqIiIikiwoeZBU6fdFZ6FWR97eWwxTKopn9lbho6+XczYc0n3+OSXbt6dkOv3vISIiIhKX7o4k1QgMDOTkqax8OOsveGAa3L+XWzfcwq+z91Dk9GrSv9OLAkFBnHr2Wa9DFREREUmWlDxIqhAWBkGjdpCmwTZoupQbTxVj2FcZabpnH3ToBIGBcNNNvOF1oCIiIiLJmJIH8WvWwqjv9/Da9LehwwTSh+UnaF5R3py/lZ8tsHEjlCx5/ngVQ4uIiIhcnpIH8UuBgYE83ORN6gZ243ipUXBLDA3+KMTERbvYGHGI/7Vpw+5ChWgUJ3EQERERkfgpeRC/czQkhqAftxF0qjiU30+lXZX4bsoqOLGLrN9+S9UnnqCqMV6HKSIiIpLiaJ0H8QuBgYFER8ObQxdyQ/dq0HgC+SOyM31UDoKn7uT2oCGUBHjySVDiICIiInJNNPIgfiHo418Y8NdKwov+TNpMeQn64RbeXL+ZoRbWdu3K26++Srdjx7wOU0RERCRFM9Zar2NINJUrV7bBwcFehyFJaMP2UzT7qD+bcw3B2LQ8vqwYo39fzaRIaLN7N9x6q9chioiIiKQoxpgV1trKl9qnaUuS4gQGBnLqdDTFmnehzBdF2ZyvPyXXF2fr0Gjaz1rN1+2epS0ocRARERFJZJq2JCmKtRD0vz94L+QnIkuuJs/+Unw1AW7dv5aiM2dStG5dAP658UaPIxURERHxPxp5kGQt7roLUxf+Rb6XmkDb3yHdYQK/L87hX07w6HuDuBMgNnG4+DwRERERSRxKHiRZCwoK4q+9J7jhqado9FtJjub4jUazq7Dzk/2EbthCv6fbQJs29OjVy+tQRURERPyeCqYl2QoNjyJzjbqY+9djMx2h9JpqfP/7VmYeD6Hz4cOQN6/XIYqIiIj4nfgKplXzIMlKYGAg1kLvcb9AvePwyDay7yrLqF+zUCL3SUoGL6NU0aJ0VuIgIiIikuSUPEiyEjR8PHlbFoenlxNw7FbemFiJfrkzkubHL6FaNQB6aYqSiIiIiCdU8yCeiVvUvHVPCOW6vgrP7+JI5gU8+lsNjs7MysZNK0izYMH5xOHi80REREQk6Sh5EM8EBQVxJjSSEm2ep/jwIqzLOIzSq6ox/5M03LR4IR8+3pSKvXqBMV6HKiIiIiJo2pJ4JCbGwh3VyPVuWSJv30Kevyow8vdwVu9ZRM2TJ6mZLZvXIYqIiIjIRZQ8SJI5N90o6LNvoG52aBUMRwrRY8KdPJrVUuXPOTS++WYClTiIiIiIJEtKHiTJBA0eTskXmsJz2zHh2Wkyozr/y5eHLFP6Q6lSgIqhRURERJIzJQ/icydOh9Py40/glQg2pR9JheX3MOmood2yBWS5aJ0RFUOLiIiIJF8qmBafCAwMJCbGUr39G+R8txi/RHUh/993MOrTghSbsZCv69/HfRplEBEREUlRfLrCtDGmPvAxkBYYaa0dcNH+14EOQBRwGGhnrd0duy8aWBd76N/W2oZX+jytMJ18mJtKkOPxGziRZz4ZDhWh1/wbOLh+MR+FhUGGDF6HJyIiIiKXEd8K0z4beTDGpAWGAw8BpYAWxphSFx22CqhsrS0HTAIGxdkXaq2tEPu4YuIg3jo33WjNX/9Q7PVn4NmtnMy0nha/3MvxzE3ptmA6H4MSBxEREZEUzJfTlqoC2621O6y1EcC3QKO4B1hr51lrz8a+XAoU9GE84kNB/QZQ9Ol2VBh1B9uyjqfykhoMHhrJwmV/MCBLJsiZU8XQIiIiIimcLwumCwB74rzeC1S7zLEA7YEZcV5nNMYE46Y0DbDW/nipk4wxnYBOALfeeuv1xCvXICbG8trIiZiX8vJXzq+4aVNVxh69mS6zf+QNa3kjzrEqhhYRERFJ2ZJFwbQxpjVQGRgcZ/NtsXOtWgIfGWOKXOpca+0Ia21la23lfPnyJUG0ci4JeOyFd0nfsTxDD7QgQ1gW3hhTjjITl7GwenlWexqhiIiIiPiCL0ce9gG3xHldMHbbBYwxDwDvAvdaa8PPbbfW7ov9ucMY8ztQEfjLh/FKAgV9+AVfh2xmxw0TSXM6H0/PfpCoRbN5PzIS0qb1OjwRERER8RFfjjwsB+4wxhQ2xqQHmgNT4x5gjKkIfAE0tNYeirM9lzEmQ+zzvEB1YKMPY5V4nBtpOHTsDLXf6QYvn2BHjh+5e/H9/J21M//77ScmWHtB4qApSiIiIiL+x2cjD9baKGPMS8BMXKvW0dbaDcaY3kCwtXYqbppSVuB7Ywz825K1JPCFMSYGl+AMsNYqefBIUO/eTN15iNX5JmOzHaTAhrtoPGsP3x6fy5d31yQwUyYVQ4uIiIikAj5d5yGpaZ2HxDfou5m8M+8Vom/cStY9pXn/SGUG//Q/tvvRnxsRERER+Zcn6zxIynRuulGLl98lQ6sqdN1UH5PhLE2/v4sSozZwoEIhFZ6IiIiIpFK+LJiWFCjo/WF8f3QnG3OPh6xZaLC4ATFzZzMp4m9wU8tEREREJJVS8iAAhJwMpcWA9+CVCDYGjKfsqnv5vuZjFJ/+PCYg4ILEQcXQIiIiIqmTkodUrmevXszaeYRleX4iJuc+bthclTqzDjH16Fy+ubMmgenSqRhaRERERAAVTKdqw36Yw+szXyGywEYyHShO35P3MfibzzngR38mREREROTqqGBagH+nG81avpmbn6vPy+sfIDpbCB1XtODki5N4fcJn/ONtiCIiIiKSjGnkIRUxmXNSsV1TVuX+GqLTU3lhZQKW/MmSyDCA89OTVNMgIiIiknrFN/KgmodU4HRoBK17vwevGFZlGEPx9ffy7f1PUWFeG0zatPhTAikiIiIivqPkwY/17NWLBTuOsCD3NKJz/02u7Xdy928nmX1oHj+WrUWFNJq1JiIiIiIJp+TBT3314zwG7fmR8KJryXCoKIG7OvP+uI+YftEogzopiYiIiEhC6atnP3GuTmHR6m0U6vgI7dbcT0Se/bRa/zTHX5tJ968+5EQ854mIiIiIXIkKpv2EyZidas88yZ95vwZrKL2kGnZhMBsjzgAqhhYRERGRhFHBtB8Li4iibY++mFfS82eWkRTeVJtv6r9AtT7NMGnSqBhaRERERBKNkocUqmevXizffpjZuWYSlW8H2XaVp9z4fCzZ/zszStxLNfO41yGKiIiIiJ9R8pACTfxxHh/s+pmzxVYRcLQQ3Q68xQdjBrFQxdAiIiIi4kMqmE4BztUpLF+1laLtGtJ8dR1Cb9xFk63PEPLmQt77fCAR8ZwnIiIiIpIYVDCdAqTJmJ27nm7GkvzfgImhyJ93EbFgNXvCTgIqhhYRERGRxKOC6RTqbGgEbd7pBa+kZ0mWr7ht632Ma/gGNfo8jDFGxdAiIiIikqQ0bSmZCQwMJCbGUu/JTuToWpxJOQeQ9dAtVBxRgt0T5jF703KvQxQRERGRVEojD8nM8FGTGHJgKqdKrSL94SL0ON6Lfv8LYqWKoUVERETEYxp58Ni5OoU584Ip2O4BjnTYwJnse2m16wVOBC2n94eBxMRznoiIiIhIUtHIg8f6Dx7K1xuXs6PEb3BTeu74/V6OLV7O+IhPKXpbPgIDAzXKICIiIiLJgroteSTk2GlavtONmTnHQvrTlNhWj2/avkPFejVVCC0iIiIinomv25KmLSWhwMBAoqJjuK9ZW/L1Kc7MG4eRa3dxSn9WiM3fzODHxbO9DlFERERE5LI0bSkJffH1VAYd/o7QspvIfKAUfbK+zpvfvEmIRhpEREREJAXQyIMPnStq/uHHeeRrX4N/nl5FRPpTvPBPF04MCeb13m9wcdqgQmgRERERSa408uBD7w/5nFGbF7O3+BxMvmyU+K0W+5ct5dOoweS7IbOKoUVEREQkRVHBtA/sP3CUJ3t0YeGN30KaKO7c/gjfdg6kWLXyKoYWERERkWRNBdNJIDAwkLOhEdzTpBUFPyzOwlu+It+WChQZdgMrv5nC+F8mex2iiIiIiMh10bSlRBATYxk1cQb9Q74movwOsu+pyEc3DqTdpA4c0kiDiIiIiPgJjTxco3OFzaO+mkKu56qwt/kysNDtZBDHPlvGM6+3v+w5IiIiIiIpkUYertHHQ0fx+bZ5HCw2H5MjL6Wm1eSvlYvpH9OL9NliVAwtIiIiIn5HBdNXaduW3TzZvyurbp0M0QHU3N2Ib3u+R4HihVUMLSIiIiIpXnwF0xp5SIDAwEA6d36TB59pR3CJmXDbaW5afQ9p5m1lwalvGFG0mNchioiIiIj4nJKHK4iKimbM5N/oe2IU0RX2km/X3XxR8w2a9G6mkQYRERERSVVUMH0J5wqbh3w0huwvl2N30yWkD8vGID7k0OhFNG7X9LLniIiIiIj4K408XMLnn37NJztmElJkKWkzFqDk5HvYsm4xb9nXOGOPqxhaRERERFIlFUzHsTp4I80/eZsthaZDRFYeOvA4E/r3J9fN+TVFSURERERSBRVMxyMwMJDnOr1I3Rc7sq7ULLgtkoLLahA+fx0zzo7io0IFvQ5RRERERCRZSNXJQ1hoOP+bNoc+Zz4lpsJhCv51H/9r/A51+jyokQYRERERkYukuoLpwMBAYmIsPYI+Isdbpdn16EKyHC/AlznHsGfsXO5v/MAlzxERERERSe1S3cjDqC8nMmTPVE7duop0phAlvq3K5s3L6Ehb9h7bqWJoEREREZHL8OuRh7gjBgvn/EmhNnXZ22kzp/Ps4fF9L3Oizzo2b16GtRZr7fnjNdIgIiIiIvJffj3yEBQURJuWz/DQ2y+ypfQsuCUNt82/l2OLVvB9+CeUujm31yGKiIiIiKQYPk0ejDH1gY+BtMBIa+2Ai/ZnAMYClYCjwJPW2l2x+7oB7YFo4BVr7cyr+eyTx05R+O5aFBldAVvuBEX/qseE9r2p2q+qiqFFRERERK6Bz9Z5MMakBbYCDwJ7geVAC2vtxjjHvACUs9Y+Z4xpDjS21j5pjCkFfANUBW4GZgPFrLXR8X3mzTffbDt06MiEKbPYVWcP0bn2kn17JXLNOkHb51oRGBiIMUbJg4iIiIjIZXi1zkNVYLu1dkdsEN8CjYCNcY5pBATGPp8EDDPGmNjt31prw4Gdxpjtse+3JL4PPHr0OEMOTeZMs/VkPFiC28dWZOv25WDM+WNUDC0iIiIicm18WTBdANgT5/Xe2G2XPMZaGwWcAPIk8Nz/iMgTSljmo3Q42o0TQ9awbceqCxIHUDG0iIiIiMi1SvEF08aYTkAngPRZs2I+CWFkVH8K5E6vUQYRERERkUTky+RhH3BLnNcFY7dd6pi9xph0QA5c4XRCzgXAWjsCGAFgjLGqZxARERER8Q1fTltaDtxhjClsjEkPNAemXnTMVKBN7PNmwNzYu/+pQHNjTAZjTGHgDmCZD2MVEREREZEr8NnIg7U2yhjzEjAT16p1tLV2gzGmNxBsrZ0KjAK+ji2IDsElGMQe9x2uuDoKePFKnZYAbrrpJh/9NiIiIiIi4rNWrV6oXLmyDQ4O9joMEREREZEUK75Wrb6ctiQiIiIiIn5EyYOIiIiIiCSIkgcREREREUkQJQ8iIiIiIpIgSh5ERERERCRBlDyIiIiIiEiCKHkQEREREZEEUfIgIiIiIiIJouRBREREREQSRMmDiIiIiIgkiJIHERERERFJECUPIiIiIiKSIEoeREREREQkQZQ8iIiIiIhIgih5EBERERGRBDHWWq9jSDTGmFPAFq/jSEXyAke8DiIV0fVOerrmSUvXO2npeic9XfOkpet97W6z1ua71I50SR2Jj22x1lb2OojUwhgTrOuddHS9k56uedLS9U5aut5JT9c8ael6+4amLYmIiIiISIIoeRARERERkQTxt+RhhNcBpDK63klL1zvp6ZonLV3vpKXrnfR0zZOWrrcP+FXBtIiIiIiI+I6/jTyIiIiIiIiPpLjkwRhT3xizxRiz3Rjz9iX2ZzDGTIzd/6cxppAHYfqVBFzz140xG40xa40xc4wxt3kRp7+40vWOc1xTY4w1xqiTxHVIyPU2xjwR+2d8gzFmQlLH6G8S8HfKrcaYecaYVbF/rzTwIk5/YYwZbYw5ZIxZf5n9xhgzNPa/x1pjzJ1JHaM/ScD1bhV7ndcZYxYbY8ondYz+5ErXO85xVYwxUcaYZkkVm79KUcmDMSYtMBx4CCgFtDDGlLrosPbAMWttUeBDYGDSRulfEnjNVwGVrbXlgEnAoKSN0n8k8HpjjMkGvAr8mbQR+peEXG9jzB1AN6C6tbY00Dmp4/QnCfwz3h34zlpbEWgOfJq0UfqdMUD9ePY/BNwR++gEfJYEMfmzMcR/vXcC91prywJ90Lz86zWG+K/3ub93BgK/JUVA/i5FJQ9AVWC7tXaHtTYC+BZodNExjYD/xT6fBNQxxpgkjNHfXPGaW2vnWWvPxr5cChRM4hj9SUL+jIP7B2cgEJaUwfmhhFzvjsBwa+0xAGvtoSSO0d8k5JpbIHvs8xzA/iSMz+9Ya+cDIfEc0ggYa52lQE5jzE1JE53/udL1ttYuPvf3Cfo387ol4M83wMvAD4D+/k4EKS15KADsifN6b+y2Sx5jrY0CTgB5kiQ6/5SQax5Xe2CGTyPyb1e83rFTCm6x1k5PysD8VEL+fBcDihljFhljlhpj4v2GS64oIdc8EGhtjNkL/IL7h19852r/npfEo38zfcwYUwBojEbUEo2/rTAtHjLGtAYqA/d6HYu/MsakAYYAbT0OJTVJh5vOURv3DeF8Y0xZa+1xL4Pycy2AMdbaD4wxdwNfG2PKWGtjvA5MJLEYY+7DJQ81vI7Fz30EdLXWxmgiSuJIacnDPuCWOK8Lxm671DF7jTHpcEPeR5MmPL+UkGuOMeYB4F3cPM7wJIrNH13pemcDygC/x/4leCMw1RjT0FobnGRR+o+E/PneC/xprY0EdhpjtuKSieVJE6LfScg1b0/sHGZr7RJjTEYgL5py4CsJ+nteEo8xphwwEnjIWqt7FN+qDHwb+29mXqCBMSbKWvujp1GlYClt2tJy4A5jTGFjTHpcId3Ui46ZCrSJfd4MmGu1mMX1uOI1N8ZUBL4AGmo++HWL93pba09Ya/NaawtZawvh5ssqcbh2Cfk75UfcqAPGmLy4aUw7kjBGf5OQa/43UAfAGFMSyAgcTtIoU5epwNOxXZfuAk5Yaw94HZS/MsbcCkwGnrLWbvU6Hn9nrS0c59/MScALShyuT4oaebDWRhljXgJmAmmB0dbaDcaY3kCwtXYqMAo3xL0dV0DT3LuIU74EXvPBQFbg+9jM/m9rbUPPgk7BEni9JZEk8HrPBOoaYzYC0UAXfVN47RJ4zd8AvjTGvIYrnm6rL4GunTHmG1wCnDe2jqQXEABgrf0cV1fSANgOnAWe8SZS/5CA690TV4v5aey/mVHWWrXcvkYJuN6SyLTCtIiIiIiIJEhKm7YkIiIiIiIeUfIgIiIiIiIJouRBREREREQSRMmDiIiIiIgkiJIHERERERFJECUPIiIiIiKSIEoeRET8gDEm2hiz2hizxhiz0hhzTzzHFjLGtIzzuq0xZthVfl5nY0zma4jzI2NMras976L3OB3782ZjzKTrea9LvPdLxph2ifmeIiL+RMmDiIh/CLXWVrDWlge6Af3jObYQ0DKe/QnRGbiq5MEYkwe4y1o7/xL70l5tANba/dbaZld73hWMBl5O5PcUEfEbSh5ERPxPduBYPPsHADVjRypei912szHmV2PMNmPMoHMHGmPqGmOWxI5mfG+MyWqMeQW4GZhnjJkXe9xnxphgY8wGY0zQZT63KfBrnPfeZYwZaIxZCTxujOlojFkeO3ryw7mRDWNM4dgY1hlj+sY5v5AxZn2c5wti4zw/8mKMqW2M+d0YM8kYs9kYM97ELutrjBlgjNlojFlrjHkfwFp7FthljKma8MstIpJ6pPM6ABERSRSZjDGrgYzATcD98Rz7NvCmtfYRcNOWgApARSAc2GKM+QQIBboDD1hrzxhjugKvW2t7G2NeB+6z1h6Jfc93rbUhsSMIc4wx5ay1ay/63OrAxdOMjlpr74yNI4+19svY532B9sAnwMfAZ9bascaYFy/zOx0CHrTWhhlj7gC+ASrH7qsIlAb2A4uA6saYTUBjoIS11hpjcsZ5r2CgJrAsnmsoIpIqKXkQEfEPodbaCgDGmLuBscaYMtZam8Dz51hrT8SevxG4DcgJlAIWxX5Znx5YcpnznzDGdML9u3JT7HkXJw83AYcv2jYxzvMysUlDTiArMDN2e3XcqAXA18DAS3x+ADDMGFMBiAaKxdm3zFq7N/Z3W42btrUUCANGGWOmAdPiHH8IKHGZ31NEJFVT8iAi4mestUuMMXmBfLgb4YQIj/M8GvfvgwFmWWtbxHeiMaYw8CZQxVp7zBgzBjcCcrHQS2w/E+f5GOAxa+2a2NGQ2nH2XSkJeg04CJTHTckNi7PvP7+btTYqdmpSHaAZ8BL/jtZkjI1VREQuopoHERE/Y4wpAaQFjl7mkFNAtgS81VLcFJ+ise+bxRhz7hv9uO+RHZcEnDDG3AA8dJn32wQUjefzsgEHjDEBQKs42xcBzWOft/rPWU4O4IC1NgZ4Cvf7X5YxJiuQw1r7Cy7xKB9ndzFgfXzni4ikVkoeRET8Q6bYAujVuKlAbay10Zc5di0QHVuY/NpljsFaexhoC3xjjFmLm7J0bjrPCOBXY8w8a+0aYBWwGZiAu9m/lOlcOJpwsR7An7Hnb46z/VXgRWPMOqDAZc79FGhjjFkTG+OZyxx3TjZgWuzvtRB4Pc6+6sCsK5wvIpIqmYRPhxUREbk+xpiFwCPW2uNex3IpxpiKuKLwp7yORUQkOVLyICIiScYYUw1X3H1xMXWyYIx5ENhmrd3ldSwiIsmRkgcRET9ljCmL604UV7i1tpoX8YiISMqn5EFERERERBJEBdMiIiIiIpIgSh5ERERERCRBlDyIiIiIiEiCKHkQEREREZEEUfIgIiIiIiIJ8n96Npoa+woGvgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "N_theta = 160\n", "theta, B_sf, B_V = 0, .1, .3\n", "B_theta_ = np.linspace(0, np.pi/2, N_theta, endpoint=False)\n", "bins = 3600\n", "th = np.linspace(0, np.pi, bins, endpoint=False)\n", "HWHH = np.zeros(N_theta)\n", "for _, B_theta in enumerate(B_theta_):\n", " kappa = 1./4/B_theta**2\n", " dist = vonmises(th, theta, kappa)\n", " dist = (dist - dist.min())/(dist.max() - dist.min())\n", " ind_HWHH = np.argmax(dist<.5)\n", " HWHH[_] = th[ind_HWHH]\n", " \n", "fig, ax = plt.subplots(1, 1, figsize=(13, 8))\n", "ax.plot(B_theta_, HWHH, 'k+', label='observed')\n", "ax.plot(B_theta_, B_theta_*np.sqrt(2*np.log(2)), 'r', label='gaussian')\n", "k= 1./4/B_theta_**2\n", "ax.plot(B_theta_, .5*np.arccos(1-np.log(2)/k), 'b', label='swindale')\n", "ax.plot(B_theta_, .5*np.arccos(1+ np.log((1+np.exp(-2*k))/2)/k), 'g', label='exact')\n", "ax.set_xlabel('B_theta (radians)')\n", "ax.set_ylabel('HWHH (radians)')\n", "ax.legend()\n", "_ = ax.set_xlim([0, np.pi/2])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This shows that in the range of relevant values of ``B_theta`` (that is inferior to approximately 60 degrees) we can control the bandwidth as for a Gaussian or a von-Mises curve, while for higher values, the distribution can be considered to be flat." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 1 }