

Jonathan Peirce

Nottingham Visual Neuroscience
University of Nottingham

Plan

• Roots of PsychoPy

• Design and philosophy

• The use of OpenGL techniques for real-time rendering

• Using PsychoPy for making movies

• Other packages

• Current issues and plans

• Something completely different…?

Roots of PsychoPy

• 1985: My first ‘original’ BASIC program

• 2000-2003: Python was becoming a viable alternative to Matlab™

– Psychtoolbox extremely popular

• 2002: Python/OpenGL engine developed as a proof of concept

• 2003: PsychoPy developed more fully

• Now PsychoPy is at 0.93.6 and;

– downloaded 3000 times
– around 600 unique visitors a month
– the main psychophysics software in a number of labs

Some Psychtoolbox code

window = Screen(0, 'OpenWindow'); %open a window on screen 0

white = WhiteIndex(window); % pixel value for white

black = BlackIndex(window); % pixel value for black

gray = (white+black)/2;

inc = white-gray;

Screen(window, 'FillRect', gray);

[x,y] = meshgrid(-100:100, -100:100);

m = exp(-((x/50).^2)-((y/50).^2)) .* sin(0.03*2*pi*x);

Screen(window, 'PutImage', gray+inc*m);

Screen(window, 'Flip');

KbWait;

Screen('CloseAll');

Aims/Philosophy

• PsychoPy aims to be

– able to generate all stimuli in real time
– fully platform-independent
– as far as possible Python-based
– as user-friendly as possible (especially for non-

programmers)
– collaborative (e.g. open-source)
– entirely free

– a genuine workable alternative to
psychtoolbox

window = Screen(0, 'OpenWindow'); %open a window on screen 0

white = WhiteIndex(window); % pixel value for white

black = BlackIndex(window); % pixel value for black

gray = (white+black)/2;

inc = white-gray;

Screen(window, 'FillRect', gray);

[x,y] = meshgrid(-100:100, -100:100);

m = exp(-((x/50).^2)-((y/50).^2)) .* sin(0.03*2*pi*x);

Screen(window, 'PutImage', gray+inc*m);

Screen(window, 'Flip');

KbWait;

Screen('CloseAll');

Equivalent PsychoPy code

from psychopy import visual, event, core

win = visual.Window([400,400], rgb=[0,0,0])

gabor.draw()

win.update()

event.waitKeys()

core.quit()

gabor = visual.PatchStim(win, tex=‘sin’,sf=3,mask=‘gauss’)

Design

• Based on

– pygame/PyOpenGL (but soon moving to pyglet)
– numpy
– wx

• Not highly ‘optimised’

• Fairly object-oriented

• Interface

– originally simply script-based
– now has its own (moderately-featured) IDE
– will hopefully get a visual drag-and-drop interface

Real-time stimuli

• use hardware-accelerated graphics wherever possible

– textures, multitextures
– fragment shaders

• minimize data-transfer between CPU and GPU

– upload textures in advance of use

• if using an interpreted language you need to minimise
number of calls (reduce loops)

– vertex arrays

Textures

• PatchStim relies heavily on texturing

0 1

0

1

2-1
-1

2
glBegin(GL_QUADS)

glMultiTexCoord2fARB(top-left texture coords)
glVertex3f(top-left vertex coords)

glMultiTexCoord2fARB(bot-left texture coords)
glVertex3f(bot-left vertex coords)

glMultiTexCoord2fARB(top-right texture coords)
glVertex3f(top-right vertex coords)

glMultiTexCoord2fARB(top-left texture coords)
glVertex3f(top-left vertex coords)

glEnd()

Alpha masks

glBegin(GL_QUADS)

glMultiTexCoord2fARB(texture top-left coords)
glMultiTexCoord2fARB(mask top-left coords)
glVertex3f(top-left vertex coords)

glMultiTexCoord2fARB(texture bot-left coords)
glMultiTexCoord2fARB(mask bot-left coords)
glVertex3f(bot-left vertex coords)

glMultiTexCoord2fARB(texture top-right coords)
glMultiTexCoord2fARB(mask top-right coords)
glVertex3f(top-right vertex coords)

glMultiTexCoord2fARB(texture top-left coords)
glMultiTexCoord2fARB(mask top-left coords)
glVertex3f(top-left vertex coords)

glEnd()

We can use a second
texture to define an
alpha mask (with an
independent set of
coordinates)

textures

Other uses of textures

• Textures (and therefore visual.PatchStim) also have
an alpha setting for the stimulus (called opacity)

• Textures and masks can be

– standard forms (‘sin’, ‘sqr’, ‘gauss’…)
– numpy arrays
– images (anything PIL can load)

• Rotate/translate/scaling are determined at the beginning of
drawing each object

alpha, face

Vertex arrays

• visual.PatchStim is powerful enough to cover many
vision experiments

• A lot more people work on motion and want to draw
large arrays of dots

• visual.DotStim handles this case

– need to avoid looping
– dot X,Y calculated using numpy array maths
– OpenGL supports arrays of vertices (and potentially

texture coords)
dots

Hardware-specific optimisations

• fragment shaders can be used to accelerate certain
aspects of drawing

• frame buffers will be used to allow higher-precision imaging
(currently 8-bit frame buffer)

3D stimuli

• Can be easily extended (because of OpenGL) to handle a
3D scene with

– perspective
– lighting
– fog(?!)
– …

• …but that won’t get done until someone needs it!

Making movies

• Added facility to generate demo movies for experiments

• visual.Window has 3 relevant attributes;

– movieFrames is a list of movie frames (numpy
arrays)

– getMovieFrame() appends current frame
– saveMovieFrames(f) outputs current frame list

to file (supports tiff, jpg…, gif, mpg depending on
platform)

Other stimuli

• PsychoPy is a full-featured system for neuroscience

– sound stimuli (wavs, numpy arrays)
– text stimuli (anti-aliased TTFs, with unicode support)

• Integrates easily with other hardware

– CRS Bits++ (for 14bit DACs and LUTs)
– parallel, serial, USB ports
– joysticks (through pygame)

• Routines for calibration

• Routines to help run experiments (e.g. staircase methods)

• Routines for data analysis (bootstrapping and curve fitting)

Comparison with other options

• e-Prime & Presentation:

 proprietary, expensive
 rely on importing pre-made movies
 easy to use (e-Prime) and precise (Presentation)

• Psychtoolbox

 based on Matlab™ (and even uglier than most Matlab!)
 stable and with large user base

• VisionEgg

 Andrew Straw is an excellent programmer
 entirely free
 not so intuitive

Some problems

• Not an application like matlab

– Many users expect to find it in the >Start>Programs
menu

– Or they will double-click a script but they don’t see
error messages

– They struggle with the idea of editing code in anything
2. Python is a bit of a moving target

– incompatible dependencies
– unstable libraries (including PsychoPy itself)

3. My own lack of testing

• Not an application like matlab

– Many users expect to find it in the >Start>Programs
menu

– Or they will double-click a script but they don’t see
error messages

– They struggle with the idea of editing code in anything
2. Python is a bit of a moving target

– incompatible dependencies
– unstable libraries (including PsychoPy itself)

3. My own lack of testing

Some solutions

• built my own editor (PsychoPy IDE)

– fairly easy to do (love wx and stc)
– including syntax colouring, folding, auto-complete

(rough but works)
– lightweight way to run scripts and keep output visible

• distribute a folder of dependencies that (should) work
together

• hire a professional programmer!

Future plans

• Most things get implemented when my own work needs
them!

• Currently trying to fund a full-time programmer to push
things faster than that:

– distribute PsychoPy as an application (improved IDE
and package all dependencies)

– add a GUI drag-and-drop layer to reduce script-writing
for novices

– debugging and optimising

Something completely different…

• Python-based model of V1 cells that is;

– functional
– nonlinear filter-based model;

• simple/complex continuum
• ‘tuned’ suppression (surround suppression)
• ‘untuned’ suppression (contrast gain, cross-ori-

suppression)
• …but does not;

– require a whole bank or sheet of neurons
– mimic the mechanics of the cell

